Machine-learning-assisted insight into spin ice Dy2Ti2O7
- Autores
- Samarakoon, Anjana M.; Barros, Kipton; Li, Ying Wai; Eisenbach, Markus; Zhang, Qiang; Ye, Feng; Sharma, V.; Dun, Z. L.; Zhou, Haidong; Grigera, Santiago Andrés; Batista, Cristian D.; Tennant, D. Alan
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Complex behavior poses challenges in extracting models from experiment. An example is spin liquid formation in frustrated magnets like Dy2Ti2O7. Understanding has been hindered by issues including disorder, glass formation, and interpretation of scattering data. Here, we use an automated capability to extract model Hamiltonians from data, and to identify different magnetic regimes. This involves training an autoencoder to learn a compressed representation of three-dimensional diffuse scattering, over a wide range of spin Hamiltonians. The autoencoder finds optimal matches according to scattering and heat capacity data and provides confidence intervals. Validation tests indicate that our optimal Hamiltonian accurately predicts temperature and field dependence of both magnetic structure and magnetization, as well as glass formation and irreversibility in Dy2Ti2O7. The autoencoder can also categorize different magnetic behaviors and eliminate background noise and artifacts in raw data. Our methodology is readily applicable to other materials and types of scattering problems.
Instituto de Física de Líquidos y Sistemas Biológicos - Materia
-
Física
Model Hamiltonians
Autoencoder - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/119733
Ver los metadatos del registro completo
id |
SEDICI_9d5ecba65320fc6575e4449f16120cad |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/119733 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Machine-learning-assisted insight into spin ice Dy2Ti2O7Samarakoon, Anjana M.Barros, KiptonLi, Ying WaiEisenbach, MarkusZhang, QiangYe, FengSharma, V.Dun, Z. L.Zhou, HaidongGrigera, Santiago AndrésBatista, Cristian D.Tennant, D. AlanFísicaModel HamiltoniansAutoencoderComplex behavior poses challenges in extracting models from experiment. An example is spin liquid formation in frustrated magnets like Dy2Ti2O7. Understanding has been hindered by issues including disorder, glass formation, and interpretation of scattering data. Here, we use an automated capability to extract model Hamiltonians from data, and to identify different magnetic regimes. This involves training an autoencoder to learn a compressed representation of three-dimensional diffuse scattering, over a wide range of spin Hamiltonians. The autoencoder finds optimal matches according to scattering and heat capacity data and provides confidence intervals. Validation tests indicate that our optimal Hamiltonian accurately predicts temperature and field dependence of both magnetic structure and magnetization, as well as glass formation and irreversibility in Dy2Ti2O7. The autoencoder can also categorize different magnetic behaviors and eliminate background noise and artifacts in raw data. Our methodology is readily applicable to other materials and types of scattering problems.Instituto de Física de Líquidos y Sistemas Biológicos2020info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/119733enginfo:eu-repo/semantics/altIdentifier/issn/2041-1723info:eu-repo/semantics/altIdentifier/doi/10.1038/s41467-020-14660-yinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:28:15Zoai:sedici.unlp.edu.ar:10915/119733Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:28:15.787SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Machine-learning-assisted insight into spin ice Dy2Ti2O7 |
title |
Machine-learning-assisted insight into spin ice Dy2Ti2O7 |
spellingShingle |
Machine-learning-assisted insight into spin ice Dy2Ti2O7 Samarakoon, Anjana M. Física Model Hamiltonians Autoencoder |
title_short |
Machine-learning-assisted insight into spin ice Dy2Ti2O7 |
title_full |
Machine-learning-assisted insight into spin ice Dy2Ti2O7 |
title_fullStr |
Machine-learning-assisted insight into spin ice Dy2Ti2O7 |
title_full_unstemmed |
Machine-learning-assisted insight into spin ice Dy2Ti2O7 |
title_sort |
Machine-learning-assisted insight into spin ice Dy2Ti2O7 |
dc.creator.none.fl_str_mv |
Samarakoon, Anjana M. Barros, Kipton Li, Ying Wai Eisenbach, Markus Zhang, Qiang Ye, Feng Sharma, V. Dun, Z. L. Zhou, Haidong Grigera, Santiago Andrés Batista, Cristian D. Tennant, D. Alan |
author |
Samarakoon, Anjana M. |
author_facet |
Samarakoon, Anjana M. Barros, Kipton Li, Ying Wai Eisenbach, Markus Zhang, Qiang Ye, Feng Sharma, V. Dun, Z. L. Zhou, Haidong Grigera, Santiago Andrés Batista, Cristian D. Tennant, D. Alan |
author_role |
author |
author2 |
Barros, Kipton Li, Ying Wai Eisenbach, Markus Zhang, Qiang Ye, Feng Sharma, V. Dun, Z. L. Zhou, Haidong Grigera, Santiago Andrés Batista, Cristian D. Tennant, D. Alan |
author2_role |
author author author author author author author author author author author |
dc.subject.none.fl_str_mv |
Física Model Hamiltonians Autoencoder |
topic |
Física Model Hamiltonians Autoencoder |
dc.description.none.fl_txt_mv |
Complex behavior poses challenges in extracting models from experiment. An example is spin liquid formation in frustrated magnets like Dy2Ti2O7. Understanding has been hindered by issues including disorder, glass formation, and interpretation of scattering data. Here, we use an automated capability to extract model Hamiltonians from data, and to identify different magnetic regimes. This involves training an autoencoder to learn a compressed representation of three-dimensional diffuse scattering, over a wide range of spin Hamiltonians. The autoencoder finds optimal matches according to scattering and heat capacity data and provides confidence intervals. Validation tests indicate that our optimal Hamiltonian accurately predicts temperature and field dependence of both magnetic structure and magnetization, as well as glass formation and irreversibility in Dy2Ti2O7. The autoencoder can also categorize different magnetic behaviors and eliminate background noise and artifacts in raw data. Our methodology is readily applicable to other materials and types of scattering problems. Instituto de Física de Líquidos y Sistemas Biológicos |
description |
Complex behavior poses challenges in extracting models from experiment. An example is spin liquid formation in frustrated magnets like Dy2Ti2O7. Understanding has been hindered by issues including disorder, glass formation, and interpretation of scattering data. Here, we use an automated capability to extract model Hamiltonians from data, and to identify different magnetic regimes. This involves training an autoencoder to learn a compressed representation of three-dimensional diffuse scattering, over a wide range of spin Hamiltonians. The autoencoder finds optimal matches according to scattering and heat capacity data and provides confidence intervals. Validation tests indicate that our optimal Hamiltonian accurately predicts temperature and field dependence of both magnetic structure and magnetization, as well as glass formation and irreversibility in Dy2Ti2O7. The autoencoder can also categorize different magnetic behaviors and eliminate background noise and artifacts in raw data. Our methodology is readily applicable to other materials and types of scattering problems. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/119733 |
url |
http://sedici.unlp.edu.ar/handle/10915/119733 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/2041-1723 info:eu-repo/semantics/altIdentifier/doi/10.1038/s41467-020-14660-y |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616161205944320 |
score |
13.070432 |