Machine-learning-assisted insight into spin ice Dy2Ti2O7

Autores
Samarakoon, Anjana M.; Barros, Kipton; Li, Ying Wai; Eisenbach, Markus; Zhang, Qiang; Ye, Feng; Sharma, V.; Dun, Z. L.; Zhou, Haidong; Grigera, Santiago Andrés; Batista, Cristian D.; Tennant, D. Alan
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Complex behavior poses challenges in extracting models from experiment. An example is spin liquid formation in frustrated magnets like Dy2Ti2O7. Understanding has been hindered by issues including disorder, glass formation, and interpretation of scattering data. Here, we use an automated capability to extract model Hamiltonians from data, and to identify different magnetic regimes. This involves training an autoencoder to learn a compressed representation of three-dimensional diffuse scattering, over a wide range of spin Hamiltonians. The autoencoder finds optimal matches according to scattering and heat capacity data and provides confidence intervals. Validation tests indicate that our optimal Hamiltonian accurately predicts temperature and field dependence of both magnetic structure and magnetization, as well as glass formation and irreversibility in Dy2Ti2O7. The autoencoder can also categorize different magnetic behaviors and eliminate background noise and artifacts in raw data. Our methodology is readily applicable to other materials and types of scattering problems.
Instituto de Física de Líquidos y Sistemas Biológicos
Materia
Física
Model Hamiltonians
Autoencoder
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/119733

id SEDICI_9d5ecba65320fc6575e4449f16120cad
oai_identifier_str oai:sedici.unlp.edu.ar:10915/119733
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Machine-learning-assisted insight into spin ice Dy2Ti2O7Samarakoon, Anjana M.Barros, KiptonLi, Ying WaiEisenbach, MarkusZhang, QiangYe, FengSharma, V.Dun, Z. L.Zhou, HaidongGrigera, Santiago AndrésBatista, Cristian D.Tennant, D. AlanFísicaModel HamiltoniansAutoencoderComplex behavior poses challenges in extracting models from experiment. An example is spin liquid formation in frustrated magnets like Dy2Ti2O7. Understanding has been hindered by issues including disorder, glass formation, and interpretation of scattering data. Here, we use an automated capability to extract model Hamiltonians from data, and to identify different magnetic regimes. This involves training an autoencoder to learn a compressed representation of three-dimensional diffuse scattering, over a wide range of spin Hamiltonians. The autoencoder finds optimal matches according to scattering and heat capacity data and provides confidence intervals. Validation tests indicate that our optimal Hamiltonian accurately predicts temperature and field dependence of both magnetic structure and magnetization, as well as glass formation and irreversibility in Dy2Ti2O7. The autoencoder can also categorize different magnetic behaviors and eliminate background noise and artifacts in raw data. Our methodology is readily applicable to other materials and types of scattering problems.Instituto de Física de Líquidos y Sistemas Biológicos2020info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/119733enginfo:eu-repo/semantics/altIdentifier/issn/2041-1723info:eu-repo/semantics/altIdentifier/doi/10.1038/s41467-020-14660-yinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:28:15Zoai:sedici.unlp.edu.ar:10915/119733Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:28:15.787SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Machine-learning-assisted insight into spin ice Dy2Ti2O7
title Machine-learning-assisted insight into spin ice Dy2Ti2O7
spellingShingle Machine-learning-assisted insight into spin ice Dy2Ti2O7
Samarakoon, Anjana M.
Física
Model Hamiltonians
Autoencoder
title_short Machine-learning-assisted insight into spin ice Dy2Ti2O7
title_full Machine-learning-assisted insight into spin ice Dy2Ti2O7
title_fullStr Machine-learning-assisted insight into spin ice Dy2Ti2O7
title_full_unstemmed Machine-learning-assisted insight into spin ice Dy2Ti2O7
title_sort Machine-learning-assisted insight into spin ice Dy2Ti2O7
dc.creator.none.fl_str_mv Samarakoon, Anjana M.
Barros, Kipton
Li, Ying Wai
Eisenbach, Markus
Zhang, Qiang
Ye, Feng
Sharma, V.
Dun, Z. L.
Zhou, Haidong
Grigera, Santiago Andrés
Batista, Cristian D.
Tennant, D. Alan
author Samarakoon, Anjana M.
author_facet Samarakoon, Anjana M.
Barros, Kipton
Li, Ying Wai
Eisenbach, Markus
Zhang, Qiang
Ye, Feng
Sharma, V.
Dun, Z. L.
Zhou, Haidong
Grigera, Santiago Andrés
Batista, Cristian D.
Tennant, D. Alan
author_role author
author2 Barros, Kipton
Li, Ying Wai
Eisenbach, Markus
Zhang, Qiang
Ye, Feng
Sharma, V.
Dun, Z. L.
Zhou, Haidong
Grigera, Santiago Andrés
Batista, Cristian D.
Tennant, D. Alan
author2_role author
author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Física
Model Hamiltonians
Autoencoder
topic Física
Model Hamiltonians
Autoencoder
dc.description.none.fl_txt_mv Complex behavior poses challenges in extracting models from experiment. An example is spin liquid formation in frustrated magnets like Dy2Ti2O7. Understanding has been hindered by issues including disorder, glass formation, and interpretation of scattering data. Here, we use an automated capability to extract model Hamiltonians from data, and to identify different magnetic regimes. This involves training an autoencoder to learn a compressed representation of three-dimensional diffuse scattering, over a wide range of spin Hamiltonians. The autoencoder finds optimal matches according to scattering and heat capacity data and provides confidence intervals. Validation tests indicate that our optimal Hamiltonian accurately predicts temperature and field dependence of both magnetic structure and magnetization, as well as glass formation and irreversibility in Dy2Ti2O7. The autoencoder can also categorize different magnetic behaviors and eliminate background noise and artifacts in raw data. Our methodology is readily applicable to other materials and types of scattering problems.
Instituto de Física de Líquidos y Sistemas Biológicos
description Complex behavior poses challenges in extracting models from experiment. An example is spin liquid formation in frustrated magnets like Dy2Ti2O7. Understanding has been hindered by issues including disorder, glass formation, and interpretation of scattering data. Here, we use an automated capability to extract model Hamiltonians from data, and to identify different magnetic regimes. This involves training an autoencoder to learn a compressed representation of three-dimensional diffuse scattering, over a wide range of spin Hamiltonians. The autoencoder finds optimal matches according to scattering and heat capacity data and provides confidence intervals. Validation tests indicate that our optimal Hamiltonian accurately predicts temperature and field dependence of both magnetic structure and magnetization, as well as glass formation and irreversibility in Dy2Ti2O7. The autoencoder can also categorize different magnetic behaviors and eliminate background noise and artifacts in raw data. Our methodology is readily applicable to other materials and types of scattering problems.
publishDate 2020
dc.date.none.fl_str_mv 2020
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/119733
url http://sedici.unlp.edu.ar/handle/10915/119733
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/2041-1723
info:eu-repo/semantics/altIdentifier/doi/10.1038/s41467-020-14660-y
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616161205944320
score 13.070432