Machine-learning-assisted insight into spin ice Dy2Ti2O7
- Autores
- Samarakoon, Anjana M.; Barros, Kipton; Li, Ying Wai; Eisenbach, Markus; Zhang, Qiang; Ye, Feng; Sharma, V.; Dun, Z. L.; Zhou, Haidong; Grigera, Santiago Andrés; Batista, Cristian D.; Tennant, D. Alan
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Complex behavior poses challenges in extracting models from experiment. An example is spin liquid formation in frustrated magnets like Dy2Ti2O7. Understanding has been hindered by issues including disorder, glass formation, and interpretation of scattering data. Here, we use an automated capability to extract model Hamiltonians from data, and to identify different magnetic regimes. This involves training an autoencoder to learn a compressed representation of three-dimensional diffuse scattering, over a wide range of spin Hamiltonians. The autoencoder finds optimal matches according to scattering and heat capacity data and provides confidence intervals. Validation tests indicate that our optimal Hamiltonian accurately predicts temperature and field dependence of both magnetic structure and magnetization, as well as glass formation and irreversibility in Dy2Ti2O7. The autoencoder can also categorize different magnetic behaviors and eliminate background noise and artifacts in raw data. Our methodology is readily applicable to other materials and types of scattering problems.
Fil: Samarakoon, Anjana M.. Oak Ridge National Laboratory; Estados Unidos
Fil: Barros, Kipton. Los Alamos National High Magnetic Field Laboratory; Estados Unidos
Fil: Li, Ying Wai. Oak Ridge National Laboratory; Estados Unidos
Fil: Eisenbach, Markus. Oak Ridge National Laboratory; Estados Unidos
Fil: Zhang, Qiang. Oak Ridge National Laboratory; Estados Unidos. State University of Louisiana; Estados Unidos
Fil: Ye, Feng. Oak Ridge National Laboratory; Estados Unidos
Fil: Sharma, V.. University of Tennessee; Estados Unidos
Fil: Dun, Z. L.. University of Tennessee; Estados Unidos
Fil: Zhou, Haidong. University of Tennessee; Estados Unidos
Fil: Grigera, Santiago Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina. University of St. Andrews; Reino Unido
Fil: Batista, Cristian D.. Oak Ridge National Laboratory; Estados Unidos. University of Tennessee; Estados Unidos
Fil: Tennant, D. Alan. Oak Ridge National Laboratory; Estados Unidos - Materia
-
MACHINE LEARNING
CONDENSED MATTER
FRUSTRATION
MAGNETISM - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/154430
Ver los metadatos del registro completo
id |
CONICETDig_117108bbfb6fc5c5c30f2104b652a37b |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/154430 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Machine-learning-assisted insight into spin ice Dy2Ti2O7Samarakoon, Anjana M.Barros, KiptonLi, Ying WaiEisenbach, MarkusZhang, QiangYe, FengSharma, V.Dun, Z. L.Zhou, HaidongGrigera, Santiago AndrésBatista, Cristian D.Tennant, D. AlanMACHINE LEARNINGCONDENSED MATTERFRUSTRATIONMAGNETISMhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Complex behavior poses challenges in extracting models from experiment. An example is spin liquid formation in frustrated magnets like Dy2Ti2O7. Understanding has been hindered by issues including disorder, glass formation, and interpretation of scattering data. Here, we use an automated capability to extract model Hamiltonians from data, and to identify different magnetic regimes. This involves training an autoencoder to learn a compressed representation of three-dimensional diffuse scattering, over a wide range of spin Hamiltonians. The autoencoder finds optimal matches according to scattering and heat capacity data and provides confidence intervals. Validation tests indicate that our optimal Hamiltonian accurately predicts temperature and field dependence of both magnetic structure and magnetization, as well as glass formation and irreversibility in Dy2Ti2O7. The autoencoder can also categorize different magnetic behaviors and eliminate background noise and artifacts in raw data. Our methodology is readily applicable to other materials and types of scattering problems.Fil: Samarakoon, Anjana M.. Oak Ridge National Laboratory; Estados UnidosFil: Barros, Kipton. Los Alamos National High Magnetic Field Laboratory; Estados UnidosFil: Li, Ying Wai. Oak Ridge National Laboratory; Estados UnidosFil: Eisenbach, Markus. Oak Ridge National Laboratory; Estados UnidosFil: Zhang, Qiang. Oak Ridge National Laboratory; Estados Unidos. State University of Louisiana; Estados UnidosFil: Ye, Feng. Oak Ridge National Laboratory; Estados UnidosFil: Sharma, V.. University of Tennessee; Estados UnidosFil: Dun, Z. L.. University of Tennessee; Estados UnidosFil: Zhou, Haidong. University of Tennessee; Estados UnidosFil: Grigera, Santiago Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina. University of St. Andrews; Reino UnidoFil: Batista, Cristian D.. Oak Ridge National Laboratory; Estados Unidos. University of Tennessee; Estados UnidosFil: Tennant, D. Alan. Oak Ridge National Laboratory; Estados UnidosNature Publishing Group2020-02-14info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/154430Samarakoon, Anjana M.; Barros, Kipton; Li, Ying Wai; Eisenbach, Markus; Zhang, Qiang; et al.; Machine-learning-assisted insight into spin ice Dy2Ti2O7; Nature Publishing Group; Nature Communications; 11; 14-2-2020; 1-92041-1723CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1038/s41467-020-14660-yinfo:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41467-020-14660-yinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:04:28Zoai:ri.conicet.gov.ar:11336/154430instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:04:28.463CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Machine-learning-assisted insight into spin ice Dy2Ti2O7 |
title |
Machine-learning-assisted insight into spin ice Dy2Ti2O7 |
spellingShingle |
Machine-learning-assisted insight into spin ice Dy2Ti2O7 Samarakoon, Anjana M. MACHINE LEARNING CONDENSED MATTER FRUSTRATION MAGNETISM |
title_short |
Machine-learning-assisted insight into spin ice Dy2Ti2O7 |
title_full |
Machine-learning-assisted insight into spin ice Dy2Ti2O7 |
title_fullStr |
Machine-learning-assisted insight into spin ice Dy2Ti2O7 |
title_full_unstemmed |
Machine-learning-assisted insight into spin ice Dy2Ti2O7 |
title_sort |
Machine-learning-assisted insight into spin ice Dy2Ti2O7 |
dc.creator.none.fl_str_mv |
Samarakoon, Anjana M. Barros, Kipton Li, Ying Wai Eisenbach, Markus Zhang, Qiang Ye, Feng Sharma, V. Dun, Z. L. Zhou, Haidong Grigera, Santiago Andrés Batista, Cristian D. Tennant, D. Alan |
author |
Samarakoon, Anjana M. |
author_facet |
Samarakoon, Anjana M. Barros, Kipton Li, Ying Wai Eisenbach, Markus Zhang, Qiang Ye, Feng Sharma, V. Dun, Z. L. Zhou, Haidong Grigera, Santiago Andrés Batista, Cristian D. Tennant, D. Alan |
author_role |
author |
author2 |
Barros, Kipton Li, Ying Wai Eisenbach, Markus Zhang, Qiang Ye, Feng Sharma, V. Dun, Z. L. Zhou, Haidong Grigera, Santiago Andrés Batista, Cristian D. Tennant, D. Alan |
author2_role |
author author author author author author author author author author author |
dc.subject.none.fl_str_mv |
MACHINE LEARNING CONDENSED MATTER FRUSTRATION MAGNETISM |
topic |
MACHINE LEARNING CONDENSED MATTER FRUSTRATION MAGNETISM |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Complex behavior poses challenges in extracting models from experiment. An example is spin liquid formation in frustrated magnets like Dy2Ti2O7. Understanding has been hindered by issues including disorder, glass formation, and interpretation of scattering data. Here, we use an automated capability to extract model Hamiltonians from data, and to identify different magnetic regimes. This involves training an autoencoder to learn a compressed representation of three-dimensional diffuse scattering, over a wide range of spin Hamiltonians. The autoencoder finds optimal matches according to scattering and heat capacity data and provides confidence intervals. Validation tests indicate that our optimal Hamiltonian accurately predicts temperature and field dependence of both magnetic structure and magnetization, as well as glass formation and irreversibility in Dy2Ti2O7. The autoencoder can also categorize different magnetic behaviors and eliminate background noise and artifacts in raw data. Our methodology is readily applicable to other materials and types of scattering problems. Fil: Samarakoon, Anjana M.. Oak Ridge National Laboratory; Estados Unidos Fil: Barros, Kipton. Los Alamos National High Magnetic Field Laboratory; Estados Unidos Fil: Li, Ying Wai. Oak Ridge National Laboratory; Estados Unidos Fil: Eisenbach, Markus. Oak Ridge National Laboratory; Estados Unidos Fil: Zhang, Qiang. Oak Ridge National Laboratory; Estados Unidos. State University of Louisiana; Estados Unidos Fil: Ye, Feng. Oak Ridge National Laboratory; Estados Unidos Fil: Sharma, V.. University of Tennessee; Estados Unidos Fil: Dun, Z. L.. University of Tennessee; Estados Unidos Fil: Zhou, Haidong. University of Tennessee; Estados Unidos Fil: Grigera, Santiago Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina. University of St. Andrews; Reino Unido Fil: Batista, Cristian D.. Oak Ridge National Laboratory; Estados Unidos. University of Tennessee; Estados Unidos Fil: Tennant, D. Alan. Oak Ridge National Laboratory; Estados Unidos |
description |
Complex behavior poses challenges in extracting models from experiment. An example is spin liquid formation in frustrated magnets like Dy2Ti2O7. Understanding has been hindered by issues including disorder, glass formation, and interpretation of scattering data. Here, we use an automated capability to extract model Hamiltonians from data, and to identify different magnetic regimes. This involves training an autoencoder to learn a compressed representation of three-dimensional diffuse scattering, over a wide range of spin Hamiltonians. The autoencoder finds optimal matches according to scattering and heat capacity data and provides confidence intervals. Validation tests indicate that our optimal Hamiltonian accurately predicts temperature and field dependence of both magnetic structure and magnetization, as well as glass formation and irreversibility in Dy2Ti2O7. The autoencoder can also categorize different magnetic behaviors and eliminate background noise and artifacts in raw data. Our methodology is readily applicable to other materials and types of scattering problems. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-02-14 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/154430 Samarakoon, Anjana M.; Barros, Kipton; Li, Ying Wai; Eisenbach, Markus; Zhang, Qiang; et al.; Machine-learning-assisted insight into spin ice Dy2Ti2O7; Nature Publishing Group; Nature Communications; 11; 14-2-2020; 1-9 2041-1723 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/154430 |
identifier_str_mv |
Samarakoon, Anjana M.; Barros, Kipton; Li, Ying Wai; Eisenbach, Markus; Zhang, Qiang; et al.; Machine-learning-assisted insight into spin ice Dy2Ti2O7; Nature Publishing Group; Nature Communications; 11; 14-2-2020; 1-9 2041-1723 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1038/s41467-020-14660-y info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41467-020-14660-y |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Nature Publishing Group |
publisher.none.fl_str_mv |
Nature Publishing Group |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980150079127552 |
score |
13.004268 |