Integration of machine learning with neutron scattering for the Hamiltonian tuning of spin ice under pressure
- Autores
- Samarakoon, Anjana; Tennant, D. Alan; Ye, Feng; Zhang, Qiang; Grigera, Santiago Andrés
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Quantum materials research requires co-design of theory with experiments and involves demanding simulations and the analysis of vast quantities of data, usually including pattern recognition and clustering. Artificial intelligence is a natural route to optimise these processes and bring theory and experiments together. Here, we propose a scheme that integrates machine learning with high-performance simulations and scattering measurements, covering the pipeline of typical neutron experiments. Our approach uses nonlinear autoencoders trained on realistic simulations along with a fast surrogate for the calculation of scattering in the form of a generative model. We demonstrate this approach in a highly frustrated magnet, Dy2Ti2O7, using machine learning predictions to guide the neutron scattering experiment under hydrostatic pressure, extract material parameters and construct a phase diagram. Our scheme provides a comprehensive set of capabilities that allows direct integration of theory along with automated data processing and provides on a rapid timescale direct insight into a challenging condensed matter system.
Fil: Samarakoon, Anjana. Oak Ridge National Laboratory; Estados Unidos. Argonne National Laboratory; Estados Unidos
Fil: Tennant, D. Alan. Oak Ridge National Laboratory; Estados Unidos
Fil: Ye, Feng. Oak Ridge National Laboratory; Estados Unidos
Fil: Zhang, Qiang. Oak Ridge National Laboratory; Estados Unidos
Fil: Grigera, Santiago Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina - Materia
-
Machine learning
Frustrated systems
Neutron scattering
Magnetic materials - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/215364
Ver los metadatos del registro completo
| id |
CONICETDig_34f9a9af3c81a2f31fa14de679f44dc5 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/215364 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Integration of machine learning with neutron scattering for the Hamiltonian tuning of spin ice under pressureSamarakoon, AnjanaTennant, D. AlanYe, FengZhang, QiangGrigera, Santiago AndrésMachine learningFrustrated systemsNeutron scatteringMagnetic materialshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Quantum materials research requires co-design of theory with experiments and involves demanding simulations and the analysis of vast quantities of data, usually including pattern recognition and clustering. Artificial intelligence is a natural route to optimise these processes and bring theory and experiments together. Here, we propose a scheme that integrates machine learning with high-performance simulations and scattering measurements, covering the pipeline of typical neutron experiments. Our approach uses nonlinear autoencoders trained on realistic simulations along with a fast surrogate for the calculation of scattering in the form of a generative model. We demonstrate this approach in a highly frustrated magnet, Dy2Ti2O7, using machine learning predictions to guide the neutron scattering experiment under hydrostatic pressure, extract material parameters and construct a phase diagram. Our scheme provides a comprehensive set of capabilities that allows direct integration of theory along with automated data processing and provides on a rapid timescale direct insight into a challenging condensed matter system.Fil: Samarakoon, Anjana. Oak Ridge National Laboratory; Estados Unidos. Argonne National Laboratory; Estados UnidosFil: Tennant, D. Alan. Oak Ridge National Laboratory; Estados UnidosFil: Ye, Feng. Oak Ridge National Laboratory; Estados UnidosFil: Zhang, Qiang. Oak Ridge National Laboratory; Estados UnidosFil: Grigera, Santiago Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; ArgentinaSpringer2022-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/215364Samarakoon, Anjana; Tennant, D. Alan; Ye, Feng; Zhang, Qiang; Grigera, Santiago Andrés; Integration of machine learning with neutron scattering for the Hamiltonian tuning of spin ice under pressure; Springer; Communications Materials; 3; 1; 11-2022; 1-112662-4443CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s43246-022-00306-7info:eu-repo/semantics/altIdentifier/doi/10.1038/s43246-022-00306-7info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-05T10:16:21Zoai:ri.conicet.gov.ar:11336/215364instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-05 10:16:21.716CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Integration of machine learning with neutron scattering for the Hamiltonian tuning of spin ice under pressure |
| title |
Integration of machine learning with neutron scattering for the Hamiltonian tuning of spin ice under pressure |
| spellingShingle |
Integration of machine learning with neutron scattering for the Hamiltonian tuning of spin ice under pressure Samarakoon, Anjana Machine learning Frustrated systems Neutron scattering Magnetic materials |
| title_short |
Integration of machine learning with neutron scattering for the Hamiltonian tuning of spin ice under pressure |
| title_full |
Integration of machine learning with neutron scattering for the Hamiltonian tuning of spin ice under pressure |
| title_fullStr |
Integration of machine learning with neutron scattering for the Hamiltonian tuning of spin ice under pressure |
| title_full_unstemmed |
Integration of machine learning with neutron scattering for the Hamiltonian tuning of spin ice under pressure |
| title_sort |
Integration of machine learning with neutron scattering for the Hamiltonian tuning of spin ice under pressure |
| dc.creator.none.fl_str_mv |
Samarakoon, Anjana Tennant, D. Alan Ye, Feng Zhang, Qiang Grigera, Santiago Andrés |
| author |
Samarakoon, Anjana |
| author_facet |
Samarakoon, Anjana Tennant, D. Alan Ye, Feng Zhang, Qiang Grigera, Santiago Andrés |
| author_role |
author |
| author2 |
Tennant, D. Alan Ye, Feng Zhang, Qiang Grigera, Santiago Andrés |
| author2_role |
author author author author |
| dc.subject.none.fl_str_mv |
Machine learning Frustrated systems Neutron scattering Magnetic materials |
| topic |
Machine learning Frustrated systems Neutron scattering Magnetic materials |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
Quantum materials research requires co-design of theory with experiments and involves demanding simulations and the analysis of vast quantities of data, usually including pattern recognition and clustering. Artificial intelligence is a natural route to optimise these processes and bring theory and experiments together. Here, we propose a scheme that integrates machine learning with high-performance simulations and scattering measurements, covering the pipeline of typical neutron experiments. Our approach uses nonlinear autoencoders trained on realistic simulations along with a fast surrogate for the calculation of scattering in the form of a generative model. We demonstrate this approach in a highly frustrated magnet, Dy2Ti2O7, using machine learning predictions to guide the neutron scattering experiment under hydrostatic pressure, extract material parameters and construct a phase diagram. Our scheme provides a comprehensive set of capabilities that allows direct integration of theory along with automated data processing and provides on a rapid timescale direct insight into a challenging condensed matter system. Fil: Samarakoon, Anjana. Oak Ridge National Laboratory; Estados Unidos. Argonne National Laboratory; Estados Unidos Fil: Tennant, D. Alan. Oak Ridge National Laboratory; Estados Unidos Fil: Ye, Feng. Oak Ridge National Laboratory; Estados Unidos Fil: Zhang, Qiang. Oak Ridge National Laboratory; Estados Unidos Fil: Grigera, Santiago Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina |
| description |
Quantum materials research requires co-design of theory with experiments and involves demanding simulations and the analysis of vast quantities of data, usually including pattern recognition and clustering. Artificial intelligence is a natural route to optimise these processes and bring theory and experiments together. Here, we propose a scheme that integrates machine learning with high-performance simulations and scattering measurements, covering the pipeline of typical neutron experiments. Our approach uses nonlinear autoencoders trained on realistic simulations along with a fast surrogate for the calculation of scattering in the form of a generative model. We demonstrate this approach in a highly frustrated magnet, Dy2Ti2O7, using machine learning predictions to guide the neutron scattering experiment under hydrostatic pressure, extract material parameters and construct a phase diagram. Our scheme provides a comprehensive set of capabilities that allows direct integration of theory along with automated data processing and provides on a rapid timescale direct insight into a challenging condensed matter system. |
| publishDate |
2022 |
| dc.date.none.fl_str_mv |
2022-11 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/215364 Samarakoon, Anjana; Tennant, D. Alan; Ye, Feng; Zhang, Qiang; Grigera, Santiago Andrés; Integration of machine learning with neutron scattering for the Hamiltonian tuning of spin ice under pressure; Springer; Communications Materials; 3; 1; 11-2022; 1-11 2662-4443 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/215364 |
| identifier_str_mv |
Samarakoon, Anjana; Tennant, D. Alan; Ye, Feng; Zhang, Qiang; Grigera, Santiago Andrés; Integration of machine learning with neutron scattering for the Hamiltonian tuning of spin ice under pressure; Springer; Communications Materials; 3; 1; 11-2022; 1-11 2662-4443 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s43246-022-00306-7 info:eu-repo/semantics/altIdentifier/doi/10.1038/s43246-022-00306-7 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Springer |
| publisher.none.fl_str_mv |
Springer |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1847977730501509120 |
| score |
13.121305 |