Seismic Attenuation and Stiffness Modulus Dispersion in Porous Rocks Containing Stochastic Fracture Networks

Autores
Hunziker, Jürg; Favino, Marco; Caspari, Eva; Quintal, Beatriz; Rubino, Jorge German; Krause, Rolf; Holliger, Klaus
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Understanding seismic attenuation and modulus dispersion mechanisms in fractured rocks can result in significant advances for the indirect characterization of such environments. In this paper, we study attenuation and modulus dispersion of seismic waves caused by fluid pressure diffusion (FPD) in stochastic 2-D fracture networks, allowing for a state-of-the-art representation of natural fracture networks by a power law length distribution. To this end, we apply numerical upscaling experiments consisting of compression and shear tests to our samples of fractured rocks. The resulting P and S wave attenuation and modulus dispersion behavior is analyzed with respect to the density, the length distribution, and the connectivity of the fractures. We focus our analysis on two manifestations of FPD arising in fractured rocks, namely, fracture-to-background FPD at lower frequencies and fracture-to-fracture FPD at higher frequencies. Our results indicate that FPD is sensitive not only to the fracture density but also to the geometrical characteristics of the fracture length distributions. In particular, our study suggests that information about the local connectivity of a fracture network could be retrieved from seismic data. Conversely, information about the global connectivity, which is directly linked to the effective hydraulic conductivity of the probed volume, remains rather difficult to infer.
Fil: Hunziker, Jürg. Universite de Lausanne; Suiza
Fil: Favino, Marco. Universita Della Svizzera Italiana; Italia. Universite de Lausanne; Suiza
Fil: Caspari, Eva. Universite de Lausanne; Suiza
Fil: Quintal, Beatriz. Universite de Lausanne; Suiza
Fil: Rubino, Jorge German. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Krause, Rolf. Universita Della Svizzera Italiana; Italia
Fil: Holliger, Klaus. Universite de Lausanne; Suiza
Materia
ROCK PHYSICS
SEISMIC ATTENUATION
STOCHASTIC FRACTURE NETWORKS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/97129

id CONICETDig_b2f78565dc435a8023da753a17dd3aa5
oai_identifier_str oai:ri.conicet.gov.ar:11336/97129
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Seismic Attenuation and Stiffness Modulus Dispersion in Porous Rocks Containing Stochastic Fracture NetworksHunziker, JürgFavino, MarcoCaspari, EvaQuintal, BeatrizRubino, Jorge GermanKrause, RolfHolliger, KlausROCK PHYSICSSEISMIC ATTENUATIONSTOCHASTIC FRACTURE NETWORKShttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1Understanding seismic attenuation and modulus dispersion mechanisms in fractured rocks can result in significant advances for the indirect characterization of such environments. In this paper, we study attenuation and modulus dispersion of seismic waves caused by fluid pressure diffusion (FPD) in stochastic 2-D fracture networks, allowing for a state-of-the-art representation of natural fracture networks by a power law length distribution. To this end, we apply numerical upscaling experiments consisting of compression and shear tests to our samples of fractured rocks. The resulting P and S wave attenuation and modulus dispersion behavior is analyzed with respect to the density, the length distribution, and the connectivity of the fractures. We focus our analysis on two manifestations of FPD arising in fractured rocks, namely, fracture-to-background FPD at lower frequencies and fracture-to-fracture FPD at higher frequencies. Our results indicate that FPD is sensitive not only to the fracture density but also to the geometrical characteristics of the fracture length distributions. In particular, our study suggests that information about the local connectivity of a fracture network could be retrieved from seismic data. Conversely, information about the global connectivity, which is directly linked to the effective hydraulic conductivity of the probed volume, remains rather difficult to infer.Fil: Hunziker, Jürg. Universite de Lausanne; SuizaFil: Favino, Marco. Universita Della Svizzera Italiana; Italia. Universite de Lausanne; SuizaFil: Caspari, Eva. Universite de Lausanne; SuizaFil: Quintal, Beatriz. Universite de Lausanne; SuizaFil: Rubino, Jorge German. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Krause, Rolf. Universita Della Svizzera Italiana; ItaliaFil: Holliger, Klaus. Universite de Lausanne; SuizaWiley2018-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/97129Hunziker, Jürg; Favino, Marco; Caspari, Eva; Quintal, Beatriz; Rubino, Jorge German; et al.; Seismic Attenuation and Stiffness Modulus Dispersion in Porous Rocks Containing Stochastic Fracture Networks; Wiley; Journal of Geophysical Research: Solid Earth; 123; 1; 1-2018; 125-1432169-9356CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1002/2017JB014566info:eu-repo/semantics/altIdentifier/url/https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2017JB014566info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:38:02Zoai:ri.conicet.gov.ar:11336/97129instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:38:02.41CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Seismic Attenuation and Stiffness Modulus Dispersion in Porous Rocks Containing Stochastic Fracture Networks
title Seismic Attenuation and Stiffness Modulus Dispersion in Porous Rocks Containing Stochastic Fracture Networks
spellingShingle Seismic Attenuation and Stiffness Modulus Dispersion in Porous Rocks Containing Stochastic Fracture Networks
Hunziker, Jürg
ROCK PHYSICS
SEISMIC ATTENUATION
STOCHASTIC FRACTURE NETWORKS
title_short Seismic Attenuation and Stiffness Modulus Dispersion in Porous Rocks Containing Stochastic Fracture Networks
title_full Seismic Attenuation and Stiffness Modulus Dispersion in Porous Rocks Containing Stochastic Fracture Networks
title_fullStr Seismic Attenuation and Stiffness Modulus Dispersion in Porous Rocks Containing Stochastic Fracture Networks
title_full_unstemmed Seismic Attenuation and Stiffness Modulus Dispersion in Porous Rocks Containing Stochastic Fracture Networks
title_sort Seismic Attenuation and Stiffness Modulus Dispersion in Porous Rocks Containing Stochastic Fracture Networks
dc.creator.none.fl_str_mv Hunziker, Jürg
Favino, Marco
Caspari, Eva
Quintal, Beatriz
Rubino, Jorge German
Krause, Rolf
Holliger, Klaus
author Hunziker, Jürg
author_facet Hunziker, Jürg
Favino, Marco
Caspari, Eva
Quintal, Beatriz
Rubino, Jorge German
Krause, Rolf
Holliger, Klaus
author_role author
author2 Favino, Marco
Caspari, Eva
Quintal, Beatriz
Rubino, Jorge German
Krause, Rolf
Holliger, Klaus
author2_role author
author
author
author
author
author
dc.subject.none.fl_str_mv ROCK PHYSICS
SEISMIC ATTENUATION
STOCHASTIC FRACTURE NETWORKS
topic ROCK PHYSICS
SEISMIC ATTENUATION
STOCHASTIC FRACTURE NETWORKS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.5
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Understanding seismic attenuation and modulus dispersion mechanisms in fractured rocks can result in significant advances for the indirect characterization of such environments. In this paper, we study attenuation and modulus dispersion of seismic waves caused by fluid pressure diffusion (FPD) in stochastic 2-D fracture networks, allowing for a state-of-the-art representation of natural fracture networks by a power law length distribution. To this end, we apply numerical upscaling experiments consisting of compression and shear tests to our samples of fractured rocks. The resulting P and S wave attenuation and modulus dispersion behavior is analyzed with respect to the density, the length distribution, and the connectivity of the fractures. We focus our analysis on two manifestations of FPD arising in fractured rocks, namely, fracture-to-background FPD at lower frequencies and fracture-to-fracture FPD at higher frequencies. Our results indicate that FPD is sensitive not only to the fracture density but also to the geometrical characteristics of the fracture length distributions. In particular, our study suggests that information about the local connectivity of a fracture network could be retrieved from seismic data. Conversely, information about the global connectivity, which is directly linked to the effective hydraulic conductivity of the probed volume, remains rather difficult to infer.
Fil: Hunziker, Jürg. Universite de Lausanne; Suiza
Fil: Favino, Marco. Universita Della Svizzera Italiana; Italia. Universite de Lausanne; Suiza
Fil: Caspari, Eva. Universite de Lausanne; Suiza
Fil: Quintal, Beatriz. Universite de Lausanne; Suiza
Fil: Rubino, Jorge German. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Krause, Rolf. Universita Della Svizzera Italiana; Italia
Fil: Holliger, Klaus. Universite de Lausanne; Suiza
description Understanding seismic attenuation and modulus dispersion mechanisms in fractured rocks can result in significant advances for the indirect characterization of such environments. In this paper, we study attenuation and modulus dispersion of seismic waves caused by fluid pressure diffusion (FPD) in stochastic 2-D fracture networks, allowing for a state-of-the-art representation of natural fracture networks by a power law length distribution. To this end, we apply numerical upscaling experiments consisting of compression and shear tests to our samples of fractured rocks. The resulting P and S wave attenuation and modulus dispersion behavior is analyzed with respect to the density, the length distribution, and the connectivity of the fractures. We focus our analysis on two manifestations of FPD arising in fractured rocks, namely, fracture-to-background FPD at lower frequencies and fracture-to-fracture FPD at higher frequencies. Our results indicate that FPD is sensitive not only to the fracture density but also to the geometrical characteristics of the fracture length distributions. In particular, our study suggests that information about the local connectivity of a fracture network could be retrieved from seismic data. Conversely, information about the global connectivity, which is directly linked to the effective hydraulic conductivity of the probed volume, remains rather difficult to infer.
publishDate 2018
dc.date.none.fl_str_mv 2018-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/97129
Hunziker, Jürg; Favino, Marco; Caspari, Eva; Quintal, Beatriz; Rubino, Jorge German; et al.; Seismic Attenuation and Stiffness Modulus Dispersion in Porous Rocks Containing Stochastic Fracture Networks; Wiley; Journal of Geophysical Research: Solid Earth; 123; 1; 1-2018; 125-143
2169-9356
CONICET Digital
CONICET
url http://hdl.handle.net/11336/97129
identifier_str_mv Hunziker, Jürg; Favino, Marco; Caspari, Eva; Quintal, Beatriz; Rubino, Jorge German; et al.; Seismic Attenuation and Stiffness Modulus Dispersion in Porous Rocks Containing Stochastic Fracture Networks; Wiley; Journal of Geophysical Research: Solid Earth; 123; 1; 1-2018; 125-143
2169-9356
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1002/2017JB014566
info:eu-repo/semantics/altIdentifier/url/https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2017JB014566
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Wiley
publisher.none.fl_str_mv Wiley
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613201107353600
score 13.070432