Seismic Attenuation and Stiffness Modulus Dispersion in Porous Rocks Containing Stochastic Fracture Networks
- Autores
- Hunziker, Jürg; Favino, Marco; Caspari, Eva; Quintal, Beatriz; Rubino, Jorge German; Krause, Rolf; Holliger, Klaus
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Understanding seismic attenuation and modulus dispersion mechanisms in fractured rocks can result in significant advances for the indirect characterization of such environments. In this paper, we study attenuation and modulus dispersion of seismic waves caused by fluid pressure diffusion (FPD) in stochastic 2-D fracture networks, allowing for a state-of-the-art representation of natural fracture networks by a power law length distribution. To this end, we apply numerical upscaling experiments consisting of compression and shear tests to our samples of fractured rocks. The resulting P and S wave attenuation and modulus dispersion behavior is analyzed with respect to the density, the length distribution, and the connectivity of the fractures. We focus our analysis on two manifestations of FPD arising in fractured rocks, namely, fracture-to-background FPD at lower frequencies and fracture-to-fracture FPD at higher frequencies. Our results indicate that FPD is sensitive not only to the fracture density but also to the geometrical characteristics of the fracture length distributions. In particular, our study suggests that information about the local connectivity of a fracture network could be retrieved from seismic data. Conversely, information about the global connectivity, which is directly linked to the effective hydraulic conductivity of the probed volume, remains rather difficult to infer.
Fil: Hunziker, Jürg. Universite de Lausanne; Suiza
Fil: Favino, Marco. Universita Della Svizzera Italiana; Italia. Universite de Lausanne; Suiza
Fil: Caspari, Eva. Universite de Lausanne; Suiza
Fil: Quintal, Beatriz. Universite de Lausanne; Suiza
Fil: Rubino, Jorge German. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Krause, Rolf. Universita Della Svizzera Italiana; Italia
Fil: Holliger, Klaus. Universite de Lausanne; Suiza - Materia
-
ROCK PHYSICS
SEISMIC ATTENUATION
STOCHASTIC FRACTURE NETWORKS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/97129
Ver los metadatos del registro completo
id |
CONICETDig_b2f78565dc435a8023da753a17dd3aa5 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/97129 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Seismic Attenuation and Stiffness Modulus Dispersion in Porous Rocks Containing Stochastic Fracture NetworksHunziker, JürgFavino, MarcoCaspari, EvaQuintal, BeatrizRubino, Jorge GermanKrause, RolfHolliger, KlausROCK PHYSICSSEISMIC ATTENUATIONSTOCHASTIC FRACTURE NETWORKShttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1Understanding seismic attenuation and modulus dispersion mechanisms in fractured rocks can result in significant advances for the indirect characterization of such environments. In this paper, we study attenuation and modulus dispersion of seismic waves caused by fluid pressure diffusion (FPD) in stochastic 2-D fracture networks, allowing for a state-of-the-art representation of natural fracture networks by a power law length distribution. To this end, we apply numerical upscaling experiments consisting of compression and shear tests to our samples of fractured rocks. The resulting P and S wave attenuation and modulus dispersion behavior is analyzed with respect to the density, the length distribution, and the connectivity of the fractures. We focus our analysis on two manifestations of FPD arising in fractured rocks, namely, fracture-to-background FPD at lower frequencies and fracture-to-fracture FPD at higher frequencies. Our results indicate that FPD is sensitive not only to the fracture density but also to the geometrical characteristics of the fracture length distributions. In particular, our study suggests that information about the local connectivity of a fracture network could be retrieved from seismic data. Conversely, information about the global connectivity, which is directly linked to the effective hydraulic conductivity of the probed volume, remains rather difficult to infer.Fil: Hunziker, Jürg. Universite de Lausanne; SuizaFil: Favino, Marco. Universita Della Svizzera Italiana; Italia. Universite de Lausanne; SuizaFil: Caspari, Eva. Universite de Lausanne; SuizaFil: Quintal, Beatriz. Universite de Lausanne; SuizaFil: Rubino, Jorge German. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Krause, Rolf. Universita Della Svizzera Italiana; ItaliaFil: Holliger, Klaus. Universite de Lausanne; SuizaWiley2018-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/97129Hunziker, Jürg; Favino, Marco; Caspari, Eva; Quintal, Beatriz; Rubino, Jorge German; et al.; Seismic Attenuation and Stiffness Modulus Dispersion in Porous Rocks Containing Stochastic Fracture Networks; Wiley; Journal of Geophysical Research: Solid Earth; 123; 1; 1-2018; 125-1432169-9356CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1002/2017JB014566info:eu-repo/semantics/altIdentifier/url/https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2017JB014566info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:38:02Zoai:ri.conicet.gov.ar:11336/97129instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:38:02.41CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Seismic Attenuation and Stiffness Modulus Dispersion in Porous Rocks Containing Stochastic Fracture Networks |
title |
Seismic Attenuation and Stiffness Modulus Dispersion in Porous Rocks Containing Stochastic Fracture Networks |
spellingShingle |
Seismic Attenuation and Stiffness Modulus Dispersion in Porous Rocks Containing Stochastic Fracture Networks Hunziker, Jürg ROCK PHYSICS SEISMIC ATTENUATION STOCHASTIC FRACTURE NETWORKS |
title_short |
Seismic Attenuation and Stiffness Modulus Dispersion in Porous Rocks Containing Stochastic Fracture Networks |
title_full |
Seismic Attenuation and Stiffness Modulus Dispersion in Porous Rocks Containing Stochastic Fracture Networks |
title_fullStr |
Seismic Attenuation and Stiffness Modulus Dispersion in Porous Rocks Containing Stochastic Fracture Networks |
title_full_unstemmed |
Seismic Attenuation and Stiffness Modulus Dispersion in Porous Rocks Containing Stochastic Fracture Networks |
title_sort |
Seismic Attenuation and Stiffness Modulus Dispersion in Porous Rocks Containing Stochastic Fracture Networks |
dc.creator.none.fl_str_mv |
Hunziker, Jürg Favino, Marco Caspari, Eva Quintal, Beatriz Rubino, Jorge German Krause, Rolf Holliger, Klaus |
author |
Hunziker, Jürg |
author_facet |
Hunziker, Jürg Favino, Marco Caspari, Eva Quintal, Beatriz Rubino, Jorge German Krause, Rolf Holliger, Klaus |
author_role |
author |
author2 |
Favino, Marco Caspari, Eva Quintal, Beatriz Rubino, Jorge German Krause, Rolf Holliger, Klaus |
author2_role |
author author author author author author |
dc.subject.none.fl_str_mv |
ROCK PHYSICS SEISMIC ATTENUATION STOCHASTIC FRACTURE NETWORKS |
topic |
ROCK PHYSICS SEISMIC ATTENUATION STOCHASTIC FRACTURE NETWORKS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Understanding seismic attenuation and modulus dispersion mechanisms in fractured rocks can result in significant advances for the indirect characterization of such environments. In this paper, we study attenuation and modulus dispersion of seismic waves caused by fluid pressure diffusion (FPD) in stochastic 2-D fracture networks, allowing for a state-of-the-art representation of natural fracture networks by a power law length distribution. To this end, we apply numerical upscaling experiments consisting of compression and shear tests to our samples of fractured rocks. The resulting P and S wave attenuation and modulus dispersion behavior is analyzed with respect to the density, the length distribution, and the connectivity of the fractures. We focus our analysis on two manifestations of FPD arising in fractured rocks, namely, fracture-to-background FPD at lower frequencies and fracture-to-fracture FPD at higher frequencies. Our results indicate that FPD is sensitive not only to the fracture density but also to the geometrical characteristics of the fracture length distributions. In particular, our study suggests that information about the local connectivity of a fracture network could be retrieved from seismic data. Conversely, information about the global connectivity, which is directly linked to the effective hydraulic conductivity of the probed volume, remains rather difficult to infer. Fil: Hunziker, Jürg. Universite de Lausanne; Suiza Fil: Favino, Marco. Universita Della Svizzera Italiana; Italia. Universite de Lausanne; Suiza Fil: Caspari, Eva. Universite de Lausanne; Suiza Fil: Quintal, Beatriz. Universite de Lausanne; Suiza Fil: Rubino, Jorge German. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Krause, Rolf. Universita Della Svizzera Italiana; Italia Fil: Holliger, Klaus. Universite de Lausanne; Suiza |
description |
Understanding seismic attenuation and modulus dispersion mechanisms in fractured rocks can result in significant advances for the indirect characterization of such environments. In this paper, we study attenuation and modulus dispersion of seismic waves caused by fluid pressure diffusion (FPD) in stochastic 2-D fracture networks, allowing for a state-of-the-art representation of natural fracture networks by a power law length distribution. To this end, we apply numerical upscaling experiments consisting of compression and shear tests to our samples of fractured rocks. The resulting P and S wave attenuation and modulus dispersion behavior is analyzed with respect to the density, the length distribution, and the connectivity of the fractures. We focus our analysis on two manifestations of FPD arising in fractured rocks, namely, fracture-to-background FPD at lower frequencies and fracture-to-fracture FPD at higher frequencies. Our results indicate that FPD is sensitive not only to the fracture density but also to the geometrical characteristics of the fracture length distributions. In particular, our study suggests that information about the local connectivity of a fracture network could be retrieved from seismic data. Conversely, information about the global connectivity, which is directly linked to the effective hydraulic conductivity of the probed volume, remains rather difficult to infer. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/97129 Hunziker, Jürg; Favino, Marco; Caspari, Eva; Quintal, Beatriz; Rubino, Jorge German; et al.; Seismic Attenuation and Stiffness Modulus Dispersion in Porous Rocks Containing Stochastic Fracture Networks; Wiley; Journal of Geophysical Research: Solid Earth; 123; 1; 1-2018; 125-143 2169-9356 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/97129 |
identifier_str_mv |
Hunziker, Jürg; Favino, Marco; Caspari, Eva; Quintal, Beatriz; Rubino, Jorge German; et al.; Seismic Attenuation and Stiffness Modulus Dispersion in Porous Rocks Containing Stochastic Fracture Networks; Wiley; Journal of Geophysical Research: Solid Earth; 123; 1; 1-2018; 125-143 2169-9356 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1002/2017JB014566 info:eu-repo/semantics/altIdentifier/url/https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2017JB014566 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Wiley |
publisher.none.fl_str_mv |
Wiley |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613201107353600 |
score |
13.070432 |