An Oxidative Stability Study of Amylose-Hydrolyzed Chia Oil Inclusion Complexes Using the Rancimat Method
- Autores
- Di Marco, Andrea Esther; Ixtaina, Vanesa Yanet; Tomás, Mabel Cristina
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Chia oil is a source of α-linolenic (omega-3) fatty acid, which is known to promote human health but is highly prone to oxidation. Amylose (a polymer of α-1,4 D-glucose units) can molecularly encapsulate hydrophobic molecules, forming inclusion complexes that could potentially allow the incorporation of sensitive bioactive substances into functional foods. The evaluation of their oxidative stability is relevant to understand their behavior as delivery systems, but monitoring this parameter under real storage conditions requires long periods. In the present work, the oxidative stability of amylose-hydrolyzed chia oil inclusion complexes at 25 °C was estimated from the extrapolation of the exponential dependence of the Rancimat induction times determined at different temperatures (70–98 °C). The complexes were formed with high amylose corn starch and enzymatically hydrolyzed chia oil (10% or 20% hydrolysate/starch), with and without crystallization, using the KOH/HCl method followed by freeze-drying. The spectra of attenuated total reflectance Fourier-transform infrared spectroscopy revealed typical bands that confirmed the effective retention of chia oil fatty acids by the starch structure. The scanning electron micrographs showed that these samples were formed by irregular and porous solid particles. The induction time at 25 °C of crystallized complexes decreased with an increasing hydrolysate content, while the opposite was observed in non-crystallized complexes, as those formed with 20% hydrolysate were the ones that showed the highest stability. Although these findings should be confirmed under real storage conditions, the Rancimat results could be considered as a preliminary quick prediction of the behavior of inclusion complexes as carriers of omega-3 fatty acids.
Centro de Investigación y Desarrollo en Criotecnología de Alimentos - Materia
-
Química
amylose inclusion complex
chia seed oil
omega-3
Rancimat - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/159911
Ver los metadatos del registro completo
id |
SEDICI_99f31ae12ede9b3fa9eddc8d5e4b84ba |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/159911 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
An Oxidative Stability Study of Amylose-Hydrolyzed Chia Oil Inclusion Complexes Using the Rancimat MethodDi Marco, Andrea EstherIxtaina, Vanesa YanetTomás, Mabel CristinaQuímicaamylose inclusion complexchia seed oilomega-3RancimatChia oil is a source of α-linolenic (omega-3) fatty acid, which is known to promote human health but is highly prone to oxidation. Amylose (a polymer of α-1,4 D-glucose units) can molecularly encapsulate hydrophobic molecules, forming inclusion complexes that could potentially allow the incorporation of sensitive bioactive substances into functional foods. The evaluation of their oxidative stability is relevant to understand their behavior as delivery systems, but monitoring this parameter under real storage conditions requires long periods. In the present work, the oxidative stability of amylose-hydrolyzed chia oil inclusion complexes at 25 °C was estimated from the extrapolation of the exponential dependence of the Rancimat induction times determined at different temperatures (70–98 °C). The complexes were formed with high amylose corn starch and enzymatically hydrolyzed chia oil (10% or 20% hydrolysate/starch), with and without crystallization, using the KOH/HCl method followed by freeze-drying. The spectra of attenuated total reflectance Fourier-transform infrared spectroscopy revealed typical bands that confirmed the effective retention of chia oil fatty acids by the starch structure. The scanning electron micrographs showed that these samples were formed by irregular and porous solid particles. The induction time at 25 °C of crystallized complexes decreased with an increasing hydrolysate content, while the opposite was observed in non-crystallized complexes, as those formed with 20% hydrolysate were the ones that showed the highest stability. Although these findings should be confirmed under real storage conditions, the Rancimat results could be considered as a preliminary quick prediction of the behavior of inclusion complexes as carriers of omega-3 fatty acids.Centro de Investigación y Desarrollo en Criotecnología de Alimentos2023info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/159911enginfo:eu-repo/semantics/altIdentifier/issn/2673-9976info:eu-repo/semantics/altIdentifier/doi/10.3390/blsf2023025011info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:41:51Zoai:sedici.unlp.edu.ar:10915/159911Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:41:51.605SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
An Oxidative Stability Study of Amylose-Hydrolyzed Chia Oil Inclusion Complexes Using the Rancimat Method |
title |
An Oxidative Stability Study of Amylose-Hydrolyzed Chia Oil Inclusion Complexes Using the Rancimat Method |
spellingShingle |
An Oxidative Stability Study of Amylose-Hydrolyzed Chia Oil Inclusion Complexes Using the Rancimat Method Di Marco, Andrea Esther Química amylose inclusion complex chia seed oil omega-3 Rancimat |
title_short |
An Oxidative Stability Study of Amylose-Hydrolyzed Chia Oil Inclusion Complexes Using the Rancimat Method |
title_full |
An Oxidative Stability Study of Amylose-Hydrolyzed Chia Oil Inclusion Complexes Using the Rancimat Method |
title_fullStr |
An Oxidative Stability Study of Amylose-Hydrolyzed Chia Oil Inclusion Complexes Using the Rancimat Method |
title_full_unstemmed |
An Oxidative Stability Study of Amylose-Hydrolyzed Chia Oil Inclusion Complexes Using the Rancimat Method |
title_sort |
An Oxidative Stability Study of Amylose-Hydrolyzed Chia Oil Inclusion Complexes Using the Rancimat Method |
dc.creator.none.fl_str_mv |
Di Marco, Andrea Esther Ixtaina, Vanesa Yanet Tomás, Mabel Cristina |
author |
Di Marco, Andrea Esther |
author_facet |
Di Marco, Andrea Esther Ixtaina, Vanesa Yanet Tomás, Mabel Cristina |
author_role |
author |
author2 |
Ixtaina, Vanesa Yanet Tomás, Mabel Cristina |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Química amylose inclusion complex chia seed oil omega-3 Rancimat |
topic |
Química amylose inclusion complex chia seed oil omega-3 Rancimat |
dc.description.none.fl_txt_mv |
Chia oil is a source of α-linolenic (omega-3) fatty acid, which is known to promote human health but is highly prone to oxidation. Amylose (a polymer of α-1,4 D-glucose units) can molecularly encapsulate hydrophobic molecules, forming inclusion complexes that could potentially allow the incorporation of sensitive bioactive substances into functional foods. The evaluation of their oxidative stability is relevant to understand their behavior as delivery systems, but monitoring this parameter under real storage conditions requires long periods. In the present work, the oxidative stability of amylose-hydrolyzed chia oil inclusion complexes at 25 °C was estimated from the extrapolation of the exponential dependence of the Rancimat induction times determined at different temperatures (70–98 °C). The complexes were formed with high amylose corn starch and enzymatically hydrolyzed chia oil (10% or 20% hydrolysate/starch), with and without crystallization, using the KOH/HCl method followed by freeze-drying. The spectra of attenuated total reflectance Fourier-transform infrared spectroscopy revealed typical bands that confirmed the effective retention of chia oil fatty acids by the starch structure. The scanning electron micrographs showed that these samples were formed by irregular and porous solid particles. The induction time at 25 °C of crystallized complexes decreased with an increasing hydrolysate content, while the opposite was observed in non-crystallized complexes, as those formed with 20% hydrolysate were the ones that showed the highest stability. Although these findings should be confirmed under real storage conditions, the Rancimat results could be considered as a preliminary quick prediction of the behavior of inclusion complexes as carriers of omega-3 fatty acids. Centro de Investigación y Desarrollo en Criotecnología de Alimentos |
description |
Chia oil is a source of α-linolenic (omega-3) fatty acid, which is known to promote human health but is highly prone to oxidation. Amylose (a polymer of α-1,4 D-glucose units) can molecularly encapsulate hydrophobic molecules, forming inclusion complexes that could potentially allow the incorporation of sensitive bioactive substances into functional foods. The evaluation of their oxidative stability is relevant to understand their behavior as delivery systems, but monitoring this parameter under real storage conditions requires long periods. In the present work, the oxidative stability of amylose-hydrolyzed chia oil inclusion complexes at 25 °C was estimated from the extrapolation of the exponential dependence of the Rancimat induction times determined at different temperatures (70–98 °C). The complexes were formed with high amylose corn starch and enzymatically hydrolyzed chia oil (10% or 20% hydrolysate/starch), with and without crystallization, using the KOH/HCl method followed by freeze-drying. The spectra of attenuated total reflectance Fourier-transform infrared spectroscopy revealed typical bands that confirmed the effective retention of chia oil fatty acids by the starch structure. The scanning electron micrographs showed that these samples were formed by irregular and porous solid particles. The induction time at 25 °C of crystallized complexes decreased with an increasing hydrolysate content, while the opposite was observed in non-crystallized complexes, as those formed with 20% hydrolysate were the ones that showed the highest stability. Although these findings should be confirmed under real storage conditions, the Rancimat results could be considered as a preliminary quick prediction of the behavior of inclusion complexes as carriers of omega-3 fatty acids. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/159911 |
url |
http://sedici.unlp.edu.ar/handle/10915/159911 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/2673-9976 info:eu-repo/semantics/altIdentifier/doi/10.3390/blsf2023025011 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616289395408896 |
score |
13.070432 |