Coupling REPMAC with FDA to solve highly imbalanced classification problems

Autores
Ahumada, Hernán César; Grinblat, Guillermo L.; Uzal, Lucas; Ceccatto, Hermenegildo Alejandro; Granitto, Pablo Miguel
Año de publicación
2008
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
In many critical real world classification problems one of the classes has much less samples than the others (class imbalance). In a previous work we introduced the REPMAC algorithm to solve imbalanced problems. Using a clustering method, REPMAC recursively splits the majority class in several subsets, creating a decision tree, until the resulting sub-problems are balanced or easy to solve. In this work we evaluate the use of three different classifiers coupled with REPMAC. We compare the perfomance of those methods using 7 datasets from the UCI repository spanning a wide range of number of features and imbalance degree. We find that the good perfomance of REPMAC is almost independent of the classifier coupled to it, which suggest that it success is mostly related to the use of an appropriate strategy to cope with imbalanced problems
Workshop de Agentes y Sistemas Inteligentes (WASI)
Red de Universidades con Carreras en Informática (RedUNCI)
Materia
Ciencias Informáticas
imbalanced problems
Algorithms
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/21686

id SEDICI_9915b7d8f7e6a82ea618b7bc2d16e761
oai_identifier_str oai:sedici.unlp.edu.ar:10915/21686
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Coupling REPMAC with FDA to solve highly imbalanced classification problemsAhumada, Hernán CésarGrinblat, Guillermo L.Uzal, LucasCeccatto, Hermenegildo AlejandroGranitto, Pablo MiguelCiencias Informáticasimbalanced problemsAlgorithmsIn many critical real world classification problems one of the classes has much less samples than the others (class imbalance). In a previous work we introduced the REPMAC algorithm to solve imbalanced problems. Using a clustering method, REPMAC recursively splits the majority class in several subsets, creating a decision tree, until the resulting sub-problems are balanced or easy to solve. In this work we evaluate the use of three different classifiers coupled with REPMAC. We compare the perfomance of those methods using 7 datasets from the UCI repository spanning a wide range of number of features and imbalance degree. We find that the good perfomance of REPMAC is almost independent of the classifier coupled to it, which suggest that it success is mostly related to the use of an appropriate strategy to cope with imbalanced problemsWorkshop de Agentes y Sistemas Inteligentes (WASI)Red de Universidades con Carreras en Informática (RedUNCI)2008-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/21686enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T10:54:43Zoai:sedici.unlp.edu.ar:10915/21686Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 10:54:43.393SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Coupling REPMAC with FDA to solve highly imbalanced classification problems
title Coupling REPMAC with FDA to solve highly imbalanced classification problems
spellingShingle Coupling REPMAC with FDA to solve highly imbalanced classification problems
Ahumada, Hernán César
Ciencias Informáticas
imbalanced problems
Algorithms
title_short Coupling REPMAC with FDA to solve highly imbalanced classification problems
title_full Coupling REPMAC with FDA to solve highly imbalanced classification problems
title_fullStr Coupling REPMAC with FDA to solve highly imbalanced classification problems
title_full_unstemmed Coupling REPMAC with FDA to solve highly imbalanced classification problems
title_sort Coupling REPMAC with FDA to solve highly imbalanced classification problems
dc.creator.none.fl_str_mv Ahumada, Hernán César
Grinblat, Guillermo L.
Uzal, Lucas
Ceccatto, Hermenegildo Alejandro
Granitto, Pablo Miguel
author Ahumada, Hernán César
author_facet Ahumada, Hernán César
Grinblat, Guillermo L.
Uzal, Lucas
Ceccatto, Hermenegildo Alejandro
Granitto, Pablo Miguel
author_role author
author2 Grinblat, Guillermo L.
Uzal, Lucas
Ceccatto, Hermenegildo Alejandro
Granitto, Pablo Miguel
author2_role author
author
author
author
dc.subject.none.fl_str_mv Ciencias Informáticas
imbalanced problems
Algorithms
topic Ciencias Informáticas
imbalanced problems
Algorithms
dc.description.none.fl_txt_mv In many critical real world classification problems one of the classes has much less samples than the others (class imbalance). In a previous work we introduced the REPMAC algorithm to solve imbalanced problems. Using a clustering method, REPMAC recursively splits the majority class in several subsets, creating a decision tree, until the resulting sub-problems are balanced or easy to solve. In this work we evaluate the use of three different classifiers coupled with REPMAC. We compare the perfomance of those methods using 7 datasets from the UCI repository spanning a wide range of number of features and imbalance degree. We find that the good perfomance of REPMAC is almost independent of the classifier coupled to it, which suggest that it success is mostly related to the use of an appropriate strategy to cope with imbalanced problems
Workshop de Agentes y Sistemas Inteligentes (WASI)
Red de Universidades con Carreras en Informática (RedUNCI)
description In many critical real world classification problems one of the classes has much less samples than the others (class imbalance). In a previous work we introduced the REPMAC algorithm to solve imbalanced problems. Using a clustering method, REPMAC recursively splits the majority class in several subsets, creating a decision tree, until the resulting sub-problems are balanced or easy to solve. In this work we evaluate the use of three different classifiers coupled with REPMAC. We compare the perfomance of those methods using 7 datasets from the UCI repository spanning a wide range of number of features and imbalance degree. We find that the good perfomance of REPMAC is almost independent of the classifier coupled to it, which suggest that it success is mostly related to the use of an appropriate strategy to cope with imbalanced problems
publishDate 2008
dc.date.none.fl_str_mv 2008-10
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/21686
url http://sedici.unlp.edu.ar/handle/10915/21686
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844615805495410688
score 13.070432