Coupling REPMAC with FDA to solve highly imbalanced classification problems
- Autores
- Ahumada, Hernán César; Grinblat, Guillermo L.; Uzal, Lucas; Ceccatto, Hermenegildo Alejandro; Granitto, Pablo Miguel
- Año de publicación
- 2008
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- In many critical real world classification problems one of the classes has much less samples than the others (class imbalance). In a previous work we introduced the REPMAC algorithm to solve imbalanced problems. Using a clustering method, REPMAC recursively splits the majority class in several subsets, creating a decision tree, until the resulting sub-problems are balanced or easy to solve. In this work we evaluate the use of three different classifiers coupled with REPMAC. We compare the perfomance of those methods using 7 datasets from the UCI repository spanning a wide range of number of features and imbalance degree. We find that the good perfomance of REPMAC is almost independent of the classifier coupled to it, which suggest that it success is mostly related to the use of an appropriate strategy to cope with imbalanced problems
Workshop de Agentes y Sistemas Inteligentes (WASI)
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
imbalanced problems
Algorithms - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/21686
Ver los metadatos del registro completo
id |
SEDICI_9915b7d8f7e6a82ea618b7bc2d16e761 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/21686 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Coupling REPMAC with FDA to solve highly imbalanced classification problemsAhumada, Hernán CésarGrinblat, Guillermo L.Uzal, LucasCeccatto, Hermenegildo AlejandroGranitto, Pablo MiguelCiencias Informáticasimbalanced problemsAlgorithmsIn many critical real world classification problems one of the classes has much less samples than the others (class imbalance). In a previous work we introduced the REPMAC algorithm to solve imbalanced problems. Using a clustering method, REPMAC recursively splits the majority class in several subsets, creating a decision tree, until the resulting sub-problems are balanced or easy to solve. In this work we evaluate the use of three different classifiers coupled with REPMAC. We compare the perfomance of those methods using 7 datasets from the UCI repository spanning a wide range of number of features and imbalance degree. We find that the good perfomance of REPMAC is almost independent of the classifier coupled to it, which suggest that it success is mostly related to the use of an appropriate strategy to cope with imbalanced problemsWorkshop de Agentes y Sistemas Inteligentes (WASI)Red de Universidades con Carreras en Informática (RedUNCI)2008-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/21686enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T10:54:43Zoai:sedici.unlp.edu.ar:10915/21686Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 10:54:43.393SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Coupling REPMAC with FDA to solve highly imbalanced classification problems |
title |
Coupling REPMAC with FDA to solve highly imbalanced classification problems |
spellingShingle |
Coupling REPMAC with FDA to solve highly imbalanced classification problems Ahumada, Hernán César Ciencias Informáticas imbalanced problems Algorithms |
title_short |
Coupling REPMAC with FDA to solve highly imbalanced classification problems |
title_full |
Coupling REPMAC with FDA to solve highly imbalanced classification problems |
title_fullStr |
Coupling REPMAC with FDA to solve highly imbalanced classification problems |
title_full_unstemmed |
Coupling REPMAC with FDA to solve highly imbalanced classification problems |
title_sort |
Coupling REPMAC with FDA to solve highly imbalanced classification problems |
dc.creator.none.fl_str_mv |
Ahumada, Hernán César Grinblat, Guillermo L. Uzal, Lucas Ceccatto, Hermenegildo Alejandro Granitto, Pablo Miguel |
author |
Ahumada, Hernán César |
author_facet |
Ahumada, Hernán César Grinblat, Guillermo L. Uzal, Lucas Ceccatto, Hermenegildo Alejandro Granitto, Pablo Miguel |
author_role |
author |
author2 |
Grinblat, Guillermo L. Uzal, Lucas Ceccatto, Hermenegildo Alejandro Granitto, Pablo Miguel |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas imbalanced problems Algorithms |
topic |
Ciencias Informáticas imbalanced problems Algorithms |
dc.description.none.fl_txt_mv |
In many critical real world classification problems one of the classes has much less samples than the others (class imbalance). In a previous work we introduced the REPMAC algorithm to solve imbalanced problems. Using a clustering method, REPMAC recursively splits the majority class in several subsets, creating a decision tree, until the resulting sub-problems are balanced or easy to solve. In this work we evaluate the use of three different classifiers coupled with REPMAC. We compare the perfomance of those methods using 7 datasets from the UCI repository spanning a wide range of number of features and imbalance degree. We find that the good perfomance of REPMAC is almost independent of the classifier coupled to it, which suggest that it success is mostly related to the use of an appropriate strategy to cope with imbalanced problems Workshop de Agentes y Sistemas Inteligentes (WASI) Red de Universidades con Carreras en Informática (RedUNCI) |
description |
In many critical real world classification problems one of the classes has much less samples than the others (class imbalance). In a previous work we introduced the REPMAC algorithm to solve imbalanced problems. Using a clustering method, REPMAC recursively splits the majority class in several subsets, creating a decision tree, until the resulting sub-problems are balanced or easy to solve. In this work we evaluate the use of three different classifiers coupled with REPMAC. We compare the perfomance of those methods using 7 datasets from the UCI repository spanning a wide range of number of features and imbalance degree. We find that the good perfomance of REPMAC is almost independent of the classifier coupled to it, which suggest that it success is mostly related to the use of an appropriate strategy to cope with imbalanced problems |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/21686 |
url |
http://sedici.unlp.edu.ar/handle/10915/21686 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844615805495410688 |
score |
13.070432 |