Deep neural architectures for highly imbalanced data in bioinformatics
- Autores
- Bugnon, Leandro A.; Yones, Cristian; Milone, Diego H.; Stegmayer, Georgina
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- In this work, we present two new variants to the deepSOM model: the deep elastic SOM (deSOM) and the deep ensemble elastic SOM (deeSOM), which overcome the mentioned issues. In deSOM the number of deep levels not only grows automatically, but also the size of each layer is expanded adaptively according to the data at each level, thus pre-miRNA neurons can be re-organized in a larger space.
Extended abstract from Deep neural architectures for highly imbalanced data in bioinformatics, L. A. Bugnon, C. Yones, D. H. Milone, G. Stegmayer, (to appear in) IEEE Transactions on Neural Networks and Learning Systems (2019), doi 10.1109/TNNLS.2019.2914471
Sociedad Argentina de Informática e Investigación Operativa - Materia
-
Ciencias Informáticas
Bioinformatics
Pre-miRNA classification
Deep neural architectures
High class imbalance - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/3.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/87801
Ver los metadatos del registro completo
id |
SEDICI_36fa0ac53f8db837390c9b6653201fef |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/87801 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Deep neural architectures for highly imbalanced data in bioinformaticsBugnon, Leandro A.Yones, CristianMilone, Diego H.Stegmayer, GeorginaCiencias InformáticasBioinformaticsPre-miRNA classificationDeep neural architecturesHigh class imbalanceIn this work, we present two new variants to the deepSOM model: the deep elastic SOM (deSOM) and the deep ensemble elastic SOM (deeSOM), which overcome the mentioned issues. In deSOM the number of deep levels not only grows automatically, but also the size of each layer is expanded adaptively according to the data at each level, thus pre-miRNA neurons can be re-organized in a larger space.Extended abstract from Deep neural architectures for highly imbalanced data in bioinformatics, L. A. Bugnon, C. Yones, D. H. Milone, G. Stegmayer, (to appear in) IEEE Transactions on Neural Networks and Learning Systems (2019), doi 10.1109/TNNLS.2019.2914471Sociedad Argentina de Informática e Investigación Operativa2019-09info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionResumenhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf1-4http://sedici.unlp.edu.ar/handle/10915/87801enginfo:eu-repo/semantics/altIdentifier/issn/2683-8966info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/3.0/Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:17:29Zoai:sedici.unlp.edu.ar:10915/87801Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:17:29.812SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Deep neural architectures for highly imbalanced data in bioinformatics |
title |
Deep neural architectures for highly imbalanced data in bioinformatics |
spellingShingle |
Deep neural architectures for highly imbalanced data in bioinformatics Bugnon, Leandro A. Ciencias Informáticas Bioinformatics Pre-miRNA classification Deep neural architectures High class imbalance |
title_short |
Deep neural architectures for highly imbalanced data in bioinformatics |
title_full |
Deep neural architectures for highly imbalanced data in bioinformatics |
title_fullStr |
Deep neural architectures for highly imbalanced data in bioinformatics |
title_full_unstemmed |
Deep neural architectures for highly imbalanced data in bioinformatics |
title_sort |
Deep neural architectures for highly imbalanced data in bioinformatics |
dc.creator.none.fl_str_mv |
Bugnon, Leandro A. Yones, Cristian Milone, Diego H. Stegmayer, Georgina |
author |
Bugnon, Leandro A. |
author_facet |
Bugnon, Leandro A. Yones, Cristian Milone, Diego H. Stegmayer, Georgina |
author_role |
author |
author2 |
Yones, Cristian Milone, Diego H. Stegmayer, Georgina |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Bioinformatics Pre-miRNA classification Deep neural architectures High class imbalance |
topic |
Ciencias Informáticas Bioinformatics Pre-miRNA classification Deep neural architectures High class imbalance |
dc.description.none.fl_txt_mv |
In this work, we present two new variants to the deepSOM model: the deep elastic SOM (deSOM) and the deep ensemble elastic SOM (deeSOM), which overcome the mentioned issues. In deSOM the number of deep levels not only grows automatically, but also the size of each layer is expanded adaptively according to the data at each level, thus pre-miRNA neurons can be re-organized in a larger space. Extended abstract from Deep neural architectures for highly imbalanced data in bioinformatics, L. A. Bugnon, C. Yones, D. H. Milone, G. Stegmayer, (to appear in) IEEE Transactions on Neural Networks and Learning Systems (2019), doi 10.1109/TNNLS.2019.2914471 Sociedad Argentina de Informática e Investigación Operativa |
description |
In this work, we present two new variants to the deepSOM model: the deep elastic SOM (deSOM) and the deep ensemble elastic SOM (deeSOM), which overcome the mentioned issues. In deSOM the number of deep levels not only grows automatically, but also the size of each layer is expanded adaptively according to the data at each level, thus pre-miRNA neurons can be re-organized in a larger space. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Resumen http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/87801 |
url |
http://sedici.unlp.edu.ar/handle/10915/87801 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/2683-8966 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/3.0/ Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/3.0/ Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0) |
dc.format.none.fl_str_mv |
application/pdf 1-4 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616048090808320 |
score |
13.070432 |