Base-controlled mechanical systems and geometric phases

Autores
Cabrera, Alejandra Fabiana
Año de publicación
2008
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this paper, we carry a detailed study of mechanical systems with configuration space Q {long rightwards arrow} Q / G for which the base Q / G variables are being controlled. The overall system's motion is considered to be induced from the base one due to the presence of general non-holonomic constraints. It is shown that the solution can be factorized into dynamical and geometrical parts. Moreover, under favorable kinematical circumstances, the dynamical part admits a further factorization since it can be reconstructed from an intermediate (body) momentum solution, yielding a reconstruction phase formula. Finally, we apply this results to the study of concrete mechanical systems.
Facultad de Ciencias Exactas
Materia
Matemática
Classical mechanics
Controlled non-holonomic mechanical systems
Real and complex differential geometry
Reconstruction phases
Time-dependent non-integrable classical systems
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/83042

id SEDICI_90d664afe49e1febe8c92c949d24f531
oai_identifier_str oai:sedici.unlp.edu.ar:10915/83042
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Base-controlled mechanical systems and geometric phasesCabrera, Alejandra FabianaMatemáticaClassical mechanicsControlled non-holonomic mechanical systemsReal and complex differential geometryReconstruction phasesTime-dependent non-integrable classical systemsIn this paper, we carry a detailed study of mechanical systems with configuration space Q {long rightwards arrow} Q / G for which the base Q / G variables are being controlled. The overall system's motion is considered to be induced from the base one due to the presence of general non-holonomic constraints. It is shown that the solution can be factorized into dynamical and geometrical parts. Moreover, under favorable kinematical circumstances, the dynamical part admits a further factorization since it can be reconstructed from an intermediate (body) momentum solution, yielding a reconstruction phase formula. Finally, we apply this results to the study of concrete mechanical systems.Facultad de Ciencias Exactas2008info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf334-367http://sedici.unlp.edu.ar/handle/10915/83042enginfo:eu-repo/semantics/altIdentifier/issn/0393-0440info:eu-repo/semantics/altIdentifier/doi/10.1016/j.geomphys.2007.11.009info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:15:41Zoai:sedici.unlp.edu.ar:10915/83042Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:15:41.317SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Base-controlled mechanical systems and geometric phases
title Base-controlled mechanical systems and geometric phases
spellingShingle Base-controlled mechanical systems and geometric phases
Cabrera, Alejandra Fabiana
Matemática
Classical mechanics
Controlled non-holonomic mechanical systems
Real and complex differential geometry
Reconstruction phases
Time-dependent non-integrable classical systems
title_short Base-controlled mechanical systems and geometric phases
title_full Base-controlled mechanical systems and geometric phases
title_fullStr Base-controlled mechanical systems and geometric phases
title_full_unstemmed Base-controlled mechanical systems and geometric phases
title_sort Base-controlled mechanical systems and geometric phases
dc.creator.none.fl_str_mv Cabrera, Alejandra Fabiana
author Cabrera, Alejandra Fabiana
author_facet Cabrera, Alejandra Fabiana
author_role author
dc.subject.none.fl_str_mv Matemática
Classical mechanics
Controlled non-holonomic mechanical systems
Real and complex differential geometry
Reconstruction phases
Time-dependent non-integrable classical systems
topic Matemática
Classical mechanics
Controlled non-holonomic mechanical systems
Real and complex differential geometry
Reconstruction phases
Time-dependent non-integrable classical systems
dc.description.none.fl_txt_mv In this paper, we carry a detailed study of mechanical systems with configuration space Q {long rightwards arrow} Q / G for which the base Q / G variables are being controlled. The overall system's motion is considered to be induced from the base one due to the presence of general non-holonomic constraints. It is shown that the solution can be factorized into dynamical and geometrical parts. Moreover, under favorable kinematical circumstances, the dynamical part admits a further factorization since it can be reconstructed from an intermediate (body) momentum solution, yielding a reconstruction phase formula. Finally, we apply this results to the study of concrete mechanical systems.
Facultad de Ciencias Exactas
description In this paper, we carry a detailed study of mechanical systems with configuration space Q {long rightwards arrow} Q / G for which the base Q / G variables are being controlled. The overall system's motion is considered to be induced from the base one due to the presence of general non-holonomic constraints. It is shown that the solution can be factorized into dynamical and geometrical parts. Moreover, under favorable kinematical circumstances, the dynamical part admits a further factorization since it can be reconstructed from an intermediate (body) momentum solution, yielding a reconstruction phase formula. Finally, we apply this results to the study of concrete mechanical systems.
publishDate 2008
dc.date.none.fl_str_mv 2008
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/83042
url http://sedici.unlp.edu.ar/handle/10915/83042
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/0393-0440
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.geomphys.2007.11.009
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
334-367
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616028856778752
score 13.070432