Base-controlled mechanical systems and geometric phases
- Autores
- Cabrera, Alejandra Fabiana
- Año de publicación
- 2008
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper, we carry a detailed study of mechanical systems with configuration space Q {long rightwards arrow} Q / G for which the base Q / G variables are being controlled. The overall system's motion is considered to be induced from the base one due to the presence of general non-holonomic constraints. It is shown that the solution can be factorized into dynamical and geometrical parts. Moreover, under favorable kinematical circumstances, the dynamical part admits a further factorization since it can be reconstructed from an intermediate (body) momentum solution, yielding a reconstruction phase formula. Finally, we apply this results to the study of concrete mechanical systems.
Facultad de Ciencias Exactas - Materia
-
Matemática
Classical mechanics
Controlled non-holonomic mechanical systems
Real and complex differential geometry
Reconstruction phases
Time-dependent non-integrable classical systems - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
.jpg)
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/83042
Ver los metadatos del registro completo
| id |
SEDICI_90d664afe49e1febe8c92c949d24f531 |
|---|---|
| oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/83042 |
| network_acronym_str |
SEDICI |
| repository_id_str |
1329 |
| network_name_str |
SEDICI (UNLP) |
| spelling |
Base-controlled mechanical systems and geometric phasesCabrera, Alejandra FabianaMatemáticaClassical mechanicsControlled non-holonomic mechanical systemsReal and complex differential geometryReconstruction phasesTime-dependent non-integrable classical systemsIn this paper, we carry a detailed study of mechanical systems with configuration space Q {long rightwards arrow} Q / G for which the base Q / G variables are being controlled. The overall system's motion is considered to be induced from the base one due to the presence of general non-holonomic constraints. It is shown that the solution can be factorized into dynamical and geometrical parts. Moreover, under favorable kinematical circumstances, the dynamical part admits a further factorization since it can be reconstructed from an intermediate (body) momentum solution, yielding a reconstruction phase formula. Finally, we apply this results to the study of concrete mechanical systems.Facultad de Ciencias Exactas2008info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf334-367http://sedici.unlp.edu.ar/handle/10915/83042enginfo:eu-repo/semantics/altIdentifier/issn/0393-0440info:eu-repo/semantics/altIdentifier/doi/10.1016/j.geomphys.2007.11.009info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-22T16:56:32Zoai:sedici.unlp.edu.ar:10915/83042Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-22 16:56:32.365SEDICI (UNLP) - Universidad Nacional de La Platafalse |
| dc.title.none.fl_str_mv |
Base-controlled mechanical systems and geometric phases |
| title |
Base-controlled mechanical systems and geometric phases |
| spellingShingle |
Base-controlled mechanical systems and geometric phases Cabrera, Alejandra Fabiana Matemática Classical mechanics Controlled non-holonomic mechanical systems Real and complex differential geometry Reconstruction phases Time-dependent non-integrable classical systems |
| title_short |
Base-controlled mechanical systems and geometric phases |
| title_full |
Base-controlled mechanical systems and geometric phases |
| title_fullStr |
Base-controlled mechanical systems and geometric phases |
| title_full_unstemmed |
Base-controlled mechanical systems and geometric phases |
| title_sort |
Base-controlled mechanical systems and geometric phases |
| dc.creator.none.fl_str_mv |
Cabrera, Alejandra Fabiana |
| author |
Cabrera, Alejandra Fabiana |
| author_facet |
Cabrera, Alejandra Fabiana |
| author_role |
author |
| dc.subject.none.fl_str_mv |
Matemática Classical mechanics Controlled non-holonomic mechanical systems Real and complex differential geometry Reconstruction phases Time-dependent non-integrable classical systems |
| topic |
Matemática Classical mechanics Controlled non-holonomic mechanical systems Real and complex differential geometry Reconstruction phases Time-dependent non-integrable classical systems |
| dc.description.none.fl_txt_mv |
In this paper, we carry a detailed study of mechanical systems with configuration space Q {long rightwards arrow} Q / G for which the base Q / G variables are being controlled. The overall system's motion is considered to be induced from the base one due to the presence of general non-holonomic constraints. It is shown that the solution can be factorized into dynamical and geometrical parts. Moreover, under favorable kinematical circumstances, the dynamical part admits a further factorization since it can be reconstructed from an intermediate (body) momentum solution, yielding a reconstruction phase formula. Finally, we apply this results to the study of concrete mechanical systems. Facultad de Ciencias Exactas |
| description |
In this paper, we carry a detailed study of mechanical systems with configuration space Q {long rightwards arrow} Q / G for which the base Q / G variables are being controlled. The overall system's motion is considered to be induced from the base one due to the presence of general non-holonomic constraints. It is shown that the solution can be factorized into dynamical and geometrical parts. Moreover, under favorable kinematical circumstances, the dynamical part admits a further factorization since it can be reconstructed from an intermediate (body) momentum solution, yielding a reconstruction phase formula. Finally, we apply this results to the study of concrete mechanical systems. |
| publishDate |
2008 |
| dc.date.none.fl_str_mv |
2008 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/83042 |
| url |
http://sedici.unlp.edu.ar/handle/10915/83042 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/0393-0440 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.geomphys.2007.11.009 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
| dc.format.none.fl_str_mv |
application/pdf 334-367 |
| dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
| reponame_str |
SEDICI (UNLP) |
| collection |
SEDICI (UNLP) |
| instname_str |
Universidad Nacional de La Plata |
| instacron_str |
UNLP |
| institution |
UNLP |
| repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
| repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
| _version_ |
1846783171678437376 |
| score |
12.982451 |