A generalized Montgomery phase formula for rotating self-deforming bodies
- Autores
- Cabrera, Alejandro
- Año de publicación
- 2007
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study the motion of self-deforming bodies with non-zero angular momentum when the changing shape is known as a function of time. The conserved angular momentum with respect to the center of mass, when seen from a rotating frame, describes a curve on a sphere as happens for the rigid body motion, though obeying a more complicated non-autonomous equation. We observe that if, after time , this curve is simple and closed, the deforming body’s orientation in space is fully characterized by an angle or phase θM. We also give a reconstruction formula for this angle which generalizes R. Montgomery’s well known formula for the rigid body phase. Finally, we apply these techniques to obtain analytical results on the motion of deforming bodies in some concrete examples.
Fil: Cabrera, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina - Materia
-
DEFORMABLE BODIES
RECONSTRUCTION PHASES
TIME DEPENDENT NON-INTEGRABLE CLASSICAL SYSTEMS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/241811
Ver los metadatos del registro completo
id |
CONICETDig_7020db69c7791833b9d24271d04823bf |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/241811 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A generalized Montgomery phase formula for rotating self-deforming bodiesCabrera, AlejandroDEFORMABLE BODIESRECONSTRUCTION PHASESTIME DEPENDENT NON-INTEGRABLE CLASSICAL SYSTEMShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study the motion of self-deforming bodies with non-zero angular momentum when the changing shape is known as a function of time. The conserved angular momentum with respect to the center of mass, when seen from a rotating frame, describes a curve on a sphere as happens for the rigid body motion, though obeying a more complicated non-autonomous equation. We observe that if, after time , this curve is simple and closed, the deforming body’s orientation in space is fully characterized by an angle or phase θM. We also give a reconstruction formula for this angle which generalizes R. Montgomery’s well known formula for the rigid body phase. Finally, we apply these techniques to obtain analytical results on the motion of deforming bodies in some concrete examples.Fil: Cabrera, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; ArgentinaElsevier Science2007-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/241811Cabrera, Alejandro; A generalized Montgomery phase formula for rotating self-deforming bodies; Elsevier Science; Journal Of Geometry And Physics; 57; 5; 4-2007; 1405-14200393-0440CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0393044006001616info:eu-repo/semantics/altIdentifier/doi/10.1016/j.geomphys.2006.11.003info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:39:09Zoai:ri.conicet.gov.ar:11336/241811instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:39:09.717CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A generalized Montgomery phase formula for rotating self-deforming bodies |
title |
A generalized Montgomery phase formula for rotating self-deforming bodies |
spellingShingle |
A generalized Montgomery phase formula for rotating self-deforming bodies Cabrera, Alejandro DEFORMABLE BODIES RECONSTRUCTION PHASES TIME DEPENDENT NON-INTEGRABLE CLASSICAL SYSTEMS |
title_short |
A generalized Montgomery phase formula for rotating self-deforming bodies |
title_full |
A generalized Montgomery phase formula for rotating self-deforming bodies |
title_fullStr |
A generalized Montgomery phase formula for rotating self-deforming bodies |
title_full_unstemmed |
A generalized Montgomery phase formula for rotating self-deforming bodies |
title_sort |
A generalized Montgomery phase formula for rotating self-deforming bodies |
dc.creator.none.fl_str_mv |
Cabrera, Alejandro |
author |
Cabrera, Alejandro |
author_facet |
Cabrera, Alejandro |
author_role |
author |
dc.subject.none.fl_str_mv |
DEFORMABLE BODIES RECONSTRUCTION PHASES TIME DEPENDENT NON-INTEGRABLE CLASSICAL SYSTEMS |
topic |
DEFORMABLE BODIES RECONSTRUCTION PHASES TIME DEPENDENT NON-INTEGRABLE CLASSICAL SYSTEMS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We study the motion of self-deforming bodies with non-zero angular momentum when the changing shape is known as a function of time. The conserved angular momentum with respect to the center of mass, when seen from a rotating frame, describes a curve on a sphere as happens for the rigid body motion, though obeying a more complicated non-autonomous equation. We observe that if, after time , this curve is simple and closed, the deforming body’s orientation in space is fully characterized by an angle or phase θM. We also give a reconstruction formula for this angle which generalizes R. Montgomery’s well known formula for the rigid body phase. Finally, we apply these techniques to obtain analytical results on the motion of deforming bodies in some concrete examples. Fil: Cabrera, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina |
description |
We study the motion of self-deforming bodies with non-zero angular momentum when the changing shape is known as a function of time. The conserved angular momentum with respect to the center of mass, when seen from a rotating frame, describes a curve on a sphere as happens for the rigid body motion, though obeying a more complicated non-autonomous equation. We observe that if, after time , this curve is simple and closed, the deforming body’s orientation in space is fully characterized by an angle or phase θM. We also give a reconstruction formula for this angle which generalizes R. Montgomery’s well known formula for the rigid body phase. Finally, we apply these techniques to obtain analytical results on the motion of deforming bodies in some concrete examples. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/241811 Cabrera, Alejandro; A generalized Montgomery phase formula for rotating self-deforming bodies; Elsevier Science; Journal Of Geometry And Physics; 57; 5; 4-2007; 1405-1420 0393-0440 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/241811 |
identifier_str_mv |
Cabrera, Alejandro; A generalized Montgomery phase formula for rotating self-deforming bodies; Elsevier Science; Journal Of Geometry And Physics; 57; 5; 4-2007; 1405-1420 0393-0440 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0393044006001616 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.geomphys.2006.11.003 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614416218193920 |
score |
13.070432 |