Dirac constraints in field theory and exterior differential systems
- Autores
- Capriotti, Santiago
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The usual treatment of a (first order) classical field theory such as electromagnetism has a little drawback: It has a primary constraint submanifold that arise from the fact that the dynamics is governed by the antisymmetric part of the jet variables. So it is natural to ask if there exists a formulation of this kind of field theories which avoids this problem, retaining the versatility of the known approach. The following paper deals with a family of variational problems, namely, the so called non standard variational problems, which intends to capture the data necessary to set up such a formulation for field theories. A multisymplectic structure for the family of non standard variational problems will be found, and it will be related with the (pre)symplectic structure arising on the space of sections of the bundle of fields. In this setting the Dirac theory of constraints will be studied, obtaining among other things a novel characterization of the constraint manifold which arises in this theory, as generators of an exterior differential system associated to the equations of motion and the chosen slicing. Several examples of application of this formalism will be discussed.
Fil: Capriotti, Santiago. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina - Materia
-
Dirac Constraints
Exterior Differential Systems
Classical Field Theory - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/62081
Ver los metadatos del registro completo
id |
CONICETDig_6b00f6fff7af8911445c079d4787c421 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/62081 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Dirac constraints in field theory and exterior differential systemsCapriotti, SantiagoDirac ConstraintsExterior Differential SystemsClassical Field Theoryhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The usual treatment of a (first order) classical field theory such as electromagnetism has a little drawback: It has a primary constraint submanifold that arise from the fact that the dynamics is governed by the antisymmetric part of the jet variables. So it is natural to ask if there exists a formulation of this kind of field theories which avoids this problem, retaining the versatility of the known approach. The following paper deals with a family of variational problems, namely, the so called non standard variational problems, which intends to capture the data necessary to set up such a formulation for field theories. A multisymplectic structure for the family of non standard variational problems will be found, and it will be related with the (pre)symplectic structure arising on the space of sections of the bundle of fields. In this setting the Dirac theory of constraints will be studied, obtaining among other things a novel characterization of the constraint manifold which arises in this theory, as generators of an exterior differential system associated to the equations of motion and the chosen slicing. Several examples of application of this formalism will be discussed.Fil: Capriotti, Santiago. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; ArgentinaAmerican Institute of Mathematical Sciences2010-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/62081Capriotti, Santiago; Dirac constraints in field theory and exterior differential systems; American Institute of Mathematical Sciences; The Journal of Geometric Mechanics; 2; 1; 3-2010; 1-501941-4889CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.3934/jgm.2010.2.1info:eu-repo/semantics/altIdentifier/url/http://www.aimsciences.org/journals/displayArticles.jsp?paperID=5153info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:40:05Zoai:ri.conicet.gov.ar:11336/62081instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:40:05.888CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Dirac constraints in field theory and exterior differential systems |
title |
Dirac constraints in field theory and exterior differential systems |
spellingShingle |
Dirac constraints in field theory and exterior differential systems Capriotti, Santiago Dirac Constraints Exterior Differential Systems Classical Field Theory |
title_short |
Dirac constraints in field theory and exterior differential systems |
title_full |
Dirac constraints in field theory and exterior differential systems |
title_fullStr |
Dirac constraints in field theory and exterior differential systems |
title_full_unstemmed |
Dirac constraints in field theory and exterior differential systems |
title_sort |
Dirac constraints in field theory and exterior differential systems |
dc.creator.none.fl_str_mv |
Capriotti, Santiago |
author |
Capriotti, Santiago |
author_facet |
Capriotti, Santiago |
author_role |
author |
dc.subject.none.fl_str_mv |
Dirac Constraints Exterior Differential Systems Classical Field Theory |
topic |
Dirac Constraints Exterior Differential Systems Classical Field Theory |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The usual treatment of a (first order) classical field theory such as electromagnetism has a little drawback: It has a primary constraint submanifold that arise from the fact that the dynamics is governed by the antisymmetric part of the jet variables. So it is natural to ask if there exists a formulation of this kind of field theories which avoids this problem, retaining the versatility of the known approach. The following paper deals with a family of variational problems, namely, the so called non standard variational problems, which intends to capture the data necessary to set up such a formulation for field theories. A multisymplectic structure for the family of non standard variational problems will be found, and it will be related with the (pre)symplectic structure arising on the space of sections of the bundle of fields. In this setting the Dirac theory of constraints will be studied, obtaining among other things a novel characterization of the constraint manifold which arises in this theory, as generators of an exterior differential system associated to the equations of motion and the chosen slicing. Several examples of application of this formalism will be discussed. Fil: Capriotti, Santiago. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina |
description |
The usual treatment of a (first order) classical field theory such as electromagnetism has a little drawback: It has a primary constraint submanifold that arise from the fact that the dynamics is governed by the antisymmetric part of the jet variables. So it is natural to ask if there exists a formulation of this kind of field theories which avoids this problem, retaining the versatility of the known approach. The following paper deals with a family of variational problems, namely, the so called non standard variational problems, which intends to capture the data necessary to set up such a formulation for field theories. A multisymplectic structure for the family of non standard variational problems will be found, and it will be related with the (pre)symplectic structure arising on the space of sections of the bundle of fields. In this setting the Dirac theory of constraints will be studied, obtaining among other things a novel characterization of the constraint manifold which arises in this theory, as generators of an exterior differential system associated to the equations of motion and the chosen slicing. Several examples of application of this formalism will be discussed. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/62081 Capriotti, Santiago; Dirac constraints in field theory and exterior differential systems; American Institute of Mathematical Sciences; The Journal of Geometric Mechanics; 2; 1; 3-2010; 1-50 1941-4889 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/62081 |
identifier_str_mv |
Capriotti, Santiago; Dirac constraints in field theory and exterior differential systems; American Institute of Mathematical Sciences; The Journal of Geometric Mechanics; 2; 1; 3-2010; 1-50 1941-4889 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.3934/jgm.2010.2.1 info:eu-repo/semantics/altIdentifier/url/http://www.aimsciences.org/journals/displayArticles.jsp?paperID=5153 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Institute of Mathematical Sciences |
publisher.none.fl_str_mv |
American Institute of Mathematical Sciences |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613268037959680 |
score |
13.070432 |