Dirac constraints in field theory and exterior differential systems

Autores
Capriotti, Santiago
Año de publicación
2010
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The usual treatment of a (first order) classical field theory such as electromagnetism has a little drawback: It has a primary constraint submanifold that arise from the fact that the dynamics is governed by the antisymmetric part of the jet variables. So it is natural to ask if there exists a formulation of this kind of field theories which avoids this problem, retaining the versatility of the known approach. The following paper deals with a family of variational problems, namely, the so called non standard variational problems, which intends to capture the data necessary to set up such a formulation for field theories. A multisymplectic structure for the family of non standard variational problems will be found, and it will be related with the (pre)symplectic structure arising on the space of sections of the bundle of fields. In this setting the Dirac theory of constraints will be studied, obtaining among other things a novel characterization of the constraint manifold which arises in this theory, as generators of an exterior differential system associated to the equations of motion and the chosen slicing. Several examples of application of this formalism will be discussed.
Fil: Capriotti, Santiago. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina
Materia
Dirac Constraints
Exterior Differential Systems
Classical Field Theory
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/62081

id CONICETDig_6b00f6fff7af8911445c079d4787c421
oai_identifier_str oai:ri.conicet.gov.ar:11336/62081
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Dirac constraints in field theory and exterior differential systemsCapriotti, SantiagoDirac ConstraintsExterior Differential SystemsClassical Field Theoryhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The usual treatment of a (first order) classical field theory such as electromagnetism has a little drawback: It has a primary constraint submanifold that arise from the fact that the dynamics is governed by the antisymmetric part of the jet variables. So it is natural to ask if there exists a formulation of this kind of field theories which avoids this problem, retaining the versatility of the known approach. The following paper deals with a family of variational problems, namely, the so called non standard variational problems, which intends to capture the data necessary to set up such a formulation for field theories. A multisymplectic structure for the family of non standard variational problems will be found, and it will be related with the (pre)symplectic structure arising on the space of sections of the bundle of fields. In this setting the Dirac theory of constraints will be studied, obtaining among other things a novel characterization of the constraint manifold which arises in this theory, as generators of an exterior differential system associated to the equations of motion and the chosen slicing. Several examples of application of this formalism will be discussed.Fil: Capriotti, Santiago. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; ArgentinaAmerican Institute of Mathematical Sciences2010-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/62081Capriotti, Santiago; Dirac constraints in field theory and exterior differential systems; American Institute of Mathematical Sciences; The Journal of Geometric Mechanics; 2; 1; 3-2010; 1-501941-4889CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.3934/jgm.2010.2.1info:eu-repo/semantics/altIdentifier/url/http://www.aimsciences.org/journals/displayArticles.jsp?paperID=5153info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:40:05Zoai:ri.conicet.gov.ar:11336/62081instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:40:05.888CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Dirac constraints in field theory and exterior differential systems
title Dirac constraints in field theory and exterior differential systems
spellingShingle Dirac constraints in field theory and exterior differential systems
Capriotti, Santiago
Dirac Constraints
Exterior Differential Systems
Classical Field Theory
title_short Dirac constraints in field theory and exterior differential systems
title_full Dirac constraints in field theory and exterior differential systems
title_fullStr Dirac constraints in field theory and exterior differential systems
title_full_unstemmed Dirac constraints in field theory and exterior differential systems
title_sort Dirac constraints in field theory and exterior differential systems
dc.creator.none.fl_str_mv Capriotti, Santiago
author Capriotti, Santiago
author_facet Capriotti, Santiago
author_role author
dc.subject.none.fl_str_mv Dirac Constraints
Exterior Differential Systems
Classical Field Theory
topic Dirac Constraints
Exterior Differential Systems
Classical Field Theory
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The usual treatment of a (first order) classical field theory such as electromagnetism has a little drawback: It has a primary constraint submanifold that arise from the fact that the dynamics is governed by the antisymmetric part of the jet variables. So it is natural to ask if there exists a formulation of this kind of field theories which avoids this problem, retaining the versatility of the known approach. The following paper deals with a family of variational problems, namely, the so called non standard variational problems, which intends to capture the data necessary to set up such a formulation for field theories. A multisymplectic structure for the family of non standard variational problems will be found, and it will be related with the (pre)symplectic structure arising on the space of sections of the bundle of fields. In this setting the Dirac theory of constraints will be studied, obtaining among other things a novel characterization of the constraint manifold which arises in this theory, as generators of an exterior differential system associated to the equations of motion and the chosen slicing. Several examples of application of this formalism will be discussed.
Fil: Capriotti, Santiago. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina
description The usual treatment of a (first order) classical field theory such as electromagnetism has a little drawback: It has a primary constraint submanifold that arise from the fact that the dynamics is governed by the antisymmetric part of the jet variables. So it is natural to ask if there exists a formulation of this kind of field theories which avoids this problem, retaining the versatility of the known approach. The following paper deals with a family of variational problems, namely, the so called non standard variational problems, which intends to capture the data necessary to set up such a formulation for field theories. A multisymplectic structure for the family of non standard variational problems will be found, and it will be related with the (pre)symplectic structure arising on the space of sections of the bundle of fields. In this setting the Dirac theory of constraints will be studied, obtaining among other things a novel characterization of the constraint manifold which arises in this theory, as generators of an exterior differential system associated to the equations of motion and the chosen slicing. Several examples of application of this formalism will be discussed.
publishDate 2010
dc.date.none.fl_str_mv 2010-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/62081
Capriotti, Santiago; Dirac constraints in field theory and exterior differential systems; American Institute of Mathematical Sciences; The Journal of Geometric Mechanics; 2; 1; 3-2010; 1-50
1941-4889
CONICET Digital
CONICET
url http://hdl.handle.net/11336/62081
identifier_str_mv Capriotti, Santiago; Dirac constraints in field theory and exterior differential systems; American Institute of Mathematical Sciences; The Journal of Geometric Mechanics; 2; 1; 3-2010; 1-50
1941-4889
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.3934/jgm.2010.2.1
info:eu-repo/semantics/altIdentifier/url/http://www.aimsciences.org/journals/displayArticles.jsp?paperID=5153
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Institute of Mathematical Sciences
publisher.none.fl_str_mv American Institute of Mathematical Sciences
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613268037959680
score 13.070432