Evaluación de modelos neuronales y estrategias de aumentación de datos para la identificación de trastornos del habla
- Autores
- Kemmerer, Iara; Gerard, Matías F.; Vignolo, Leandro D.
- Año de publicación
- 2024
- Idioma
- español castellano
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Los trastornos del neurodesarrollo afectan las habilidades de percepción y procesamiento del lenguaje en niños de diferentes edades. Las herramientas de diagnóstico asistido por computadora son de vital importancia para la detección temprana de trastornos del habla y el lenguaje en niños. En este trabajo se explora el uso de modelos de aprendizaje profundo para la detección del Trastorno Específico del Lenguaje a partir de la voz. Para esto se comparan dos enfoques que se emplean para alimentar los modelos neuronales: uno en el que se emplean las señales de audio sin procesar, y otro que se alimenta con espectrogramas derivados de esas señales. Se proponen tres modelos neuronales para realizar la clasificación, dos para el primer enfoque de preprocesamiento de datos y uno para el segundo. Los tres modelos emplean un bloque basado en redes neuronales convolucionales para extraer características. El primero usa una capa completamente conectada como clasificador, mientras que los otros dos procesan la información secuencial mediante redes recurrentes y luego clasifican con una red completamente conectada. A su vez, se exploran estrategias de aumentación de datos, como la adición de ruido, estiramiento temporal, corrimiento temporal y cambio de tono, para analizar su impacto en el desempeño de estas propuestas. Los resultados muestran que los modelos que utilizan las señales sin procesar alcanzan las mejores métricas. Además, el uso de las estrategias de aumentación mejora el desempeño de los modelos propuestos.
Sociedad Argentina de Informática e Investigación Operativa - Materia
-
Ciencias Informáticas
Modelos neuronales profundos
Trastorno del habla
Aumentación de datos - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
.jpg)
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/177182
Ver los metadatos del registro completo
| id |
SEDICI_8c3d361b8767574a211732a6cc288166 |
|---|---|
| oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/177182 |
| network_acronym_str |
SEDICI |
| repository_id_str |
1329 |
| network_name_str |
SEDICI (UNLP) |
| spelling |
Evaluación de modelos neuronales y estrategias de aumentación de datos para la identificación de trastornos del hablaKemmerer, IaraGerard, Matías F.Vignolo, Leandro D.Ciencias InformáticasModelos neuronales profundosTrastorno del hablaAumentación de datosLos trastornos del neurodesarrollo afectan las habilidades de percepción y procesamiento del lenguaje en niños de diferentes edades. Las herramientas de diagnóstico asistido por computadora son de vital importancia para la detección temprana de trastornos del habla y el lenguaje en niños. En este trabajo se explora el uso de modelos de aprendizaje profundo para la detección del Trastorno Específico del Lenguaje a partir de la voz. Para esto se comparan dos enfoques que se emplean para alimentar los modelos neuronales: uno en el que se emplean las señales de audio sin procesar, y otro que se alimenta con espectrogramas derivados de esas señales. Se proponen tres modelos neuronales para realizar la clasificación, dos para el primer enfoque de preprocesamiento de datos y uno para el segundo. Los tres modelos emplean un bloque basado en redes neuronales convolucionales para extraer características. El primero usa una capa completamente conectada como clasificador, mientras que los otros dos procesan la información secuencial mediante redes recurrentes y luego clasifican con una red completamente conectada. A su vez, se exploran estrategias de aumentación de datos, como la adición de ruido, estiramiento temporal, corrimiento temporal y cambio de tono, para analizar su impacto en el desempeño de estas propuestas. Los resultados muestran que los modelos que utilizan las señales sin procesar alcanzan las mejores métricas. Además, el uso de las estrategias de aumentación mejora el desempeño de los modelos propuestos.Sociedad Argentina de Informática e Investigación Operativa2024-08info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf119-132http://sedici.unlp.edu.ar/handle/10915/177182spainfo:eu-repo/semantics/altIdentifier/url/https://revistas.unlp.edu.ar/JAIIO/article/view/17916info:eu-repo/semantics/altIdentifier/issn/2451-7496info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-22T17:28:43Zoai:sedici.unlp.edu.ar:10915/177182Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-22 17:28:43.34SEDICI (UNLP) - Universidad Nacional de La Platafalse |
| dc.title.none.fl_str_mv |
Evaluación de modelos neuronales y estrategias de aumentación de datos para la identificación de trastornos del habla |
| title |
Evaluación de modelos neuronales y estrategias de aumentación de datos para la identificación de trastornos del habla |
| spellingShingle |
Evaluación de modelos neuronales y estrategias de aumentación de datos para la identificación de trastornos del habla Kemmerer, Iara Ciencias Informáticas Modelos neuronales profundos Trastorno del habla Aumentación de datos |
| title_short |
Evaluación de modelos neuronales y estrategias de aumentación de datos para la identificación de trastornos del habla |
| title_full |
Evaluación de modelos neuronales y estrategias de aumentación de datos para la identificación de trastornos del habla |
| title_fullStr |
Evaluación de modelos neuronales y estrategias de aumentación de datos para la identificación de trastornos del habla |
| title_full_unstemmed |
Evaluación de modelos neuronales y estrategias de aumentación de datos para la identificación de trastornos del habla |
| title_sort |
Evaluación de modelos neuronales y estrategias de aumentación de datos para la identificación de trastornos del habla |
| dc.creator.none.fl_str_mv |
Kemmerer, Iara Gerard, Matías F. Vignolo, Leandro D. |
| author |
Kemmerer, Iara |
| author_facet |
Kemmerer, Iara Gerard, Matías F. Vignolo, Leandro D. |
| author_role |
author |
| author2 |
Gerard, Matías F. Vignolo, Leandro D. |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
Ciencias Informáticas Modelos neuronales profundos Trastorno del habla Aumentación de datos |
| topic |
Ciencias Informáticas Modelos neuronales profundos Trastorno del habla Aumentación de datos |
| dc.description.none.fl_txt_mv |
Los trastornos del neurodesarrollo afectan las habilidades de percepción y procesamiento del lenguaje en niños de diferentes edades. Las herramientas de diagnóstico asistido por computadora son de vital importancia para la detección temprana de trastornos del habla y el lenguaje en niños. En este trabajo se explora el uso de modelos de aprendizaje profundo para la detección del Trastorno Específico del Lenguaje a partir de la voz. Para esto se comparan dos enfoques que se emplean para alimentar los modelos neuronales: uno en el que se emplean las señales de audio sin procesar, y otro que se alimenta con espectrogramas derivados de esas señales. Se proponen tres modelos neuronales para realizar la clasificación, dos para el primer enfoque de preprocesamiento de datos y uno para el segundo. Los tres modelos emplean un bloque basado en redes neuronales convolucionales para extraer características. El primero usa una capa completamente conectada como clasificador, mientras que los otros dos procesan la información secuencial mediante redes recurrentes y luego clasifican con una red completamente conectada. A su vez, se exploran estrategias de aumentación de datos, como la adición de ruido, estiramiento temporal, corrimiento temporal y cambio de tono, para analizar su impacto en el desempeño de estas propuestas. Los resultados muestran que los modelos que utilizan las señales sin procesar alcanzan las mejores métricas. Además, el uso de las estrategias de aumentación mejora el desempeño de los modelos propuestos. Sociedad Argentina de Informática e Investigación Operativa |
| description |
Los trastornos del neurodesarrollo afectan las habilidades de percepción y procesamiento del lenguaje en niños de diferentes edades. Las herramientas de diagnóstico asistido por computadora son de vital importancia para la detección temprana de trastornos del habla y el lenguaje en niños. En este trabajo se explora el uso de modelos de aprendizaje profundo para la detección del Trastorno Específico del Lenguaje a partir de la voz. Para esto se comparan dos enfoques que se emplean para alimentar los modelos neuronales: uno en el que se emplean las señales de audio sin procesar, y otro que se alimenta con espectrogramas derivados de esas señales. Se proponen tres modelos neuronales para realizar la clasificación, dos para el primer enfoque de preprocesamiento de datos y uno para el segundo. Los tres modelos emplean un bloque basado en redes neuronales convolucionales para extraer características. El primero usa una capa completamente conectada como clasificador, mientras que los otros dos procesan la información secuencial mediante redes recurrentes y luego clasifican con una red completamente conectada. A su vez, se exploran estrategias de aumentación de datos, como la adición de ruido, estiramiento temporal, corrimiento temporal y cambio de tono, para analizar su impacto en el desempeño de estas propuestas. Los resultados muestran que los modelos que utilizan las señales sin procesar alcanzan las mejores métricas. Además, el uso de las estrategias de aumentación mejora el desempeño de los modelos propuestos. |
| publishDate |
2024 |
| dc.date.none.fl_str_mv |
2024-08 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
| format |
conferenceObject |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/177182 |
| url |
http://sedici.unlp.edu.ar/handle/10915/177182 |
| dc.language.none.fl_str_mv |
spa |
| language |
spa |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://revistas.unlp.edu.ar/JAIIO/article/view/17916 info:eu-repo/semantics/altIdentifier/issn/2451-7496 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
| dc.format.none.fl_str_mv |
application/pdf 119-132 |
| dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
| reponame_str |
SEDICI (UNLP) |
| collection |
SEDICI (UNLP) |
| instname_str |
Universidad Nacional de La Plata |
| instacron_str |
UNLP |
| institution |
UNLP |
| repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
| repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
| _version_ |
1846783772615245824 |
| score |
12.982451 |