Quantum disordered phase on the frustrated honeycomb lattice
- Autores
- Cabra, Daniel Carlos; Lamas, Carlos Alberto; Rosales, Héctor Diego
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In the present paper we study the phase diagram of the Heisenberg model on the honeycomb lattice with antiferromagnetic interactions up to third neighbors along the line J₂=J₃ that includes the point J₂=J₃=J₁/2, corresponding to the highly frustrated point where the classical ground state has macroscopic degeneracy. Using the linear spin-wave theory and the Schwinger boson technique followed by a mean field decoupling and exact diagonalization for small systems, we find an intermediate phase with a spin gap and short-range Néel correlations in the strong quantum limit S=½. All techniques provide consistent results which allow us to predict the existence of a quantum disordered phase, which may have been observed in recent high-field ESR measurements in manganites.
Instituto de Física La Plata - Materia
-
Física
Physics
Lattice (order)
Antiferromagnetism
Quantum limit
Heisenberg model
Mean field theory
Condensed matter physics
Quantum mechanics
Ground state
Boson
Phase diagram - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/126230
Ver los metadatos del registro completo
id |
SEDICI_7f3182a1df556e215cfedbe66c60e097 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/126230 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Quantum disordered phase on the frustrated honeycomb latticeCabra, Daniel CarlosLamas, Carlos AlbertoRosales, Héctor DiegoFísicaPhysicsLattice (order)AntiferromagnetismQuantum limitHeisenberg modelMean field theoryCondensed matter physicsQuantum mechanicsGround stateBosonPhase diagramIn the present paper we study the phase diagram of the Heisenberg model on the honeycomb lattice with antiferromagnetic interactions up to third neighbors along the line J₂=J₃ that includes the point J₂=J₃=J₁/2, corresponding to the highly frustrated point where the classical ground state has macroscopic degeneracy. Using the linear spin-wave theory and the Schwinger boson technique followed by a mean field decoupling and exact diagonalization for small systems, we find an intermediate phase with a spin gap and short-range Néel correlations in the strong quantum limit S=½. All techniques provide consistent results which allow us to predict the existence of a quantum disordered phase, which may have been observed in recent high-field ESR measurements in manganites.Instituto de Física La Plata2011-03-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/126230enginfo:eu-repo/semantics/altIdentifier/issn/1098-0121info:eu-repo/semantics/altIdentifier/issn/1550-235Xinfo:eu-repo/semantics/altIdentifier/arxiv/1003.3226info:eu-repo/semantics/altIdentifier/doi/10.1103/physrevb.83.094506info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:30:13Zoai:sedici.unlp.edu.ar:10915/126230Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:30:14.202SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Quantum disordered phase on the frustrated honeycomb lattice |
title |
Quantum disordered phase on the frustrated honeycomb lattice |
spellingShingle |
Quantum disordered phase on the frustrated honeycomb lattice Cabra, Daniel Carlos Física Physics Lattice (order) Antiferromagnetism Quantum limit Heisenberg model Mean field theory Condensed matter physics Quantum mechanics Ground state Boson Phase diagram |
title_short |
Quantum disordered phase on the frustrated honeycomb lattice |
title_full |
Quantum disordered phase on the frustrated honeycomb lattice |
title_fullStr |
Quantum disordered phase on the frustrated honeycomb lattice |
title_full_unstemmed |
Quantum disordered phase on the frustrated honeycomb lattice |
title_sort |
Quantum disordered phase on the frustrated honeycomb lattice |
dc.creator.none.fl_str_mv |
Cabra, Daniel Carlos Lamas, Carlos Alberto Rosales, Héctor Diego |
author |
Cabra, Daniel Carlos |
author_facet |
Cabra, Daniel Carlos Lamas, Carlos Alberto Rosales, Héctor Diego |
author_role |
author |
author2 |
Lamas, Carlos Alberto Rosales, Héctor Diego |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Física Physics Lattice (order) Antiferromagnetism Quantum limit Heisenberg model Mean field theory Condensed matter physics Quantum mechanics Ground state Boson Phase diagram |
topic |
Física Physics Lattice (order) Antiferromagnetism Quantum limit Heisenberg model Mean field theory Condensed matter physics Quantum mechanics Ground state Boson Phase diagram |
dc.description.none.fl_txt_mv |
In the present paper we study the phase diagram of the Heisenberg model on the honeycomb lattice with antiferromagnetic interactions up to third neighbors along the line J₂=J₃ that includes the point J₂=J₃=J₁/2, corresponding to the highly frustrated point where the classical ground state has macroscopic degeneracy. Using the linear spin-wave theory and the Schwinger boson technique followed by a mean field decoupling and exact diagonalization for small systems, we find an intermediate phase with a spin gap and short-range Néel correlations in the strong quantum limit S=½. All techniques provide consistent results which allow us to predict the existence of a quantum disordered phase, which may have been observed in recent high-field ESR measurements in manganites. Instituto de Física La Plata |
description |
In the present paper we study the phase diagram of the Heisenberg model on the honeycomb lattice with antiferromagnetic interactions up to third neighbors along the line J₂=J₃ that includes the point J₂=J₃=J₁/2, corresponding to the highly frustrated point where the classical ground state has macroscopic degeneracy. Using the linear spin-wave theory and the Schwinger boson technique followed by a mean field decoupling and exact diagonalization for small systems, we find an intermediate phase with a spin gap and short-range Néel correlations in the strong quantum limit S=½. All techniques provide consistent results which allow us to predict the existence of a quantum disordered phase, which may have been observed in recent high-field ESR measurements in manganites. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-03-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/126230 |
url |
http://sedici.unlp.edu.ar/handle/10915/126230 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/1098-0121 info:eu-repo/semantics/altIdentifier/issn/1550-235X info:eu-repo/semantics/altIdentifier/arxiv/1003.3226 info:eu-repo/semantics/altIdentifier/doi/10.1103/physrevb.83.094506 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616182086238208 |
score |
13.070432 |