Quantum disordered phase on the frustrated honeycomb lattice

Autores
Cabra, Daniel Carlos; Lamas, Carlos Alberto; Rosales, Héctor Diego
Año de publicación
2011
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In the present paper we study the phase diagram of the Heisenberg model on the honeycomb lattice with antiferromagnetic interactions up to third neighbors along the line J₂=J₃ that includes the point J₂=J₃=J₁/2, corresponding to the highly frustrated point where the classical ground state has macroscopic degeneracy. Using the linear spin-wave theory and the Schwinger boson technique followed by a mean field decoupling and exact diagonalization for small systems, we find an intermediate phase with a spin gap and short-range Néel correlations in the strong quantum limit S=½. All techniques provide consistent results which allow us to predict the existence of a quantum disordered phase, which may have been observed in recent high-field ESR measurements in manganites.
Instituto de Física La Plata
Materia
Física
Physics
Lattice (order)
Antiferromagnetism
Quantum limit
Heisenberg model
Mean field theory
Condensed matter physics
Quantum mechanics
Ground state
Boson
Phase diagram
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/126230

id SEDICI_7f3182a1df556e215cfedbe66c60e097
oai_identifier_str oai:sedici.unlp.edu.ar:10915/126230
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Quantum disordered phase on the frustrated honeycomb latticeCabra, Daniel CarlosLamas, Carlos AlbertoRosales, Héctor DiegoFísicaPhysicsLattice (order)AntiferromagnetismQuantum limitHeisenberg modelMean field theoryCondensed matter physicsQuantum mechanicsGround stateBosonPhase diagramIn the present paper we study the phase diagram of the Heisenberg model on the honeycomb lattice with antiferromagnetic interactions up to third neighbors along the line J₂=J₃ that includes the point J₂=J₃=J₁/2, corresponding to the highly frustrated point where the classical ground state has macroscopic degeneracy. Using the linear spin-wave theory and the Schwinger boson technique followed by a mean field decoupling and exact diagonalization for small systems, we find an intermediate phase with a spin gap and short-range Néel correlations in the strong quantum limit S=½. All techniques provide consistent results which allow us to predict the existence of a quantum disordered phase, which may have been observed in recent high-field ESR measurements in manganites.Instituto de Física La Plata2011-03-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/126230enginfo:eu-repo/semantics/altIdentifier/issn/1098-0121info:eu-repo/semantics/altIdentifier/issn/1550-235Xinfo:eu-repo/semantics/altIdentifier/arxiv/1003.3226info:eu-repo/semantics/altIdentifier/doi/10.1103/physrevb.83.094506info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:30:13Zoai:sedici.unlp.edu.ar:10915/126230Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:30:14.202SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Quantum disordered phase on the frustrated honeycomb lattice
title Quantum disordered phase on the frustrated honeycomb lattice
spellingShingle Quantum disordered phase on the frustrated honeycomb lattice
Cabra, Daniel Carlos
Física
Physics
Lattice (order)
Antiferromagnetism
Quantum limit
Heisenberg model
Mean field theory
Condensed matter physics
Quantum mechanics
Ground state
Boson
Phase diagram
title_short Quantum disordered phase on the frustrated honeycomb lattice
title_full Quantum disordered phase on the frustrated honeycomb lattice
title_fullStr Quantum disordered phase on the frustrated honeycomb lattice
title_full_unstemmed Quantum disordered phase on the frustrated honeycomb lattice
title_sort Quantum disordered phase on the frustrated honeycomb lattice
dc.creator.none.fl_str_mv Cabra, Daniel Carlos
Lamas, Carlos Alberto
Rosales, Héctor Diego
author Cabra, Daniel Carlos
author_facet Cabra, Daniel Carlos
Lamas, Carlos Alberto
Rosales, Héctor Diego
author_role author
author2 Lamas, Carlos Alberto
Rosales, Héctor Diego
author2_role author
author
dc.subject.none.fl_str_mv Física
Physics
Lattice (order)
Antiferromagnetism
Quantum limit
Heisenberg model
Mean field theory
Condensed matter physics
Quantum mechanics
Ground state
Boson
Phase diagram
topic Física
Physics
Lattice (order)
Antiferromagnetism
Quantum limit
Heisenberg model
Mean field theory
Condensed matter physics
Quantum mechanics
Ground state
Boson
Phase diagram
dc.description.none.fl_txt_mv In the present paper we study the phase diagram of the Heisenberg model on the honeycomb lattice with antiferromagnetic interactions up to third neighbors along the line J₂=J₃ that includes the point J₂=J₃=J₁/2, corresponding to the highly frustrated point where the classical ground state has macroscopic degeneracy. Using the linear spin-wave theory and the Schwinger boson technique followed by a mean field decoupling and exact diagonalization for small systems, we find an intermediate phase with a spin gap and short-range Néel correlations in the strong quantum limit S=½. All techniques provide consistent results which allow us to predict the existence of a quantum disordered phase, which may have been observed in recent high-field ESR measurements in manganites.
Instituto de Física La Plata
description In the present paper we study the phase diagram of the Heisenberg model on the honeycomb lattice with antiferromagnetic interactions up to third neighbors along the line J₂=J₃ that includes the point J₂=J₃=J₁/2, corresponding to the highly frustrated point where the classical ground state has macroscopic degeneracy. Using the linear spin-wave theory and the Schwinger boson technique followed by a mean field decoupling and exact diagonalization for small systems, we find an intermediate phase with a spin gap and short-range Néel correlations in the strong quantum limit S=½. All techniques provide consistent results which allow us to predict the existence of a quantum disordered phase, which may have been observed in recent high-field ESR measurements in manganites.
publishDate 2011
dc.date.none.fl_str_mv 2011-03-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/126230
url http://sedici.unlp.edu.ar/handle/10915/126230
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/1098-0121
info:eu-repo/semantics/altIdentifier/issn/1550-235X
info:eu-repo/semantics/altIdentifier/arxiv/1003.3226
info:eu-repo/semantics/altIdentifier/doi/10.1103/physrevb.83.094506
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616182086238208
score 13.070432