Quantum phases in the frustrated Heisenberg model on the bilayer honeycomb lattice

Autores
Zhang, Hao; Arlego, Marcelo José Fabián; Lamas, Carlos Alberto
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We use a combination of analytical and numerical techniques to study the phase diagram of the frustrated Heisenberg model on the bilayer honeycomb lattice. Using the Schwinger-boson description of the spin operators followed by a mean-field decoupling, the magnetic phase diagram is studied as a function of the frustration and the interlayer couplings. The presence of both magnetically ordered and disordered phases is investigated by means of the evaluation of ground-state energy, spin gap, local magnetization, and spin-spin correlations. We observe a phase with a spin gap and short-range Néel correlations that survives for nonzero next-nearest-neighbor interaction and interlayer coupling. Furthermore, we detect signatures of a reentrant behavior in the melting of the Néel phase and symmetry restoring when the system undergoes a transition from an on-layer nematic valence-bond crystal phase to an interlayer valence-bond crystal phase. We complement our work with exact diagonalization on small clusters and dimer-series expansion calculations, together with a linear spin-wave approach to study the phase diagram as a function of the spin S, the frustration, and the interlayer couplings.
Fil: Zhang, Hao. Universidad de Tokio; Japón
Fil: Arlego, Marcelo José Fabián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Lamas, Carlos Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Materia
Quantum
phases
frustrated
Heisenberg
honeycomb
bilayer
lattice
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/101809

id CONICETDig_bdbe7ec5e571ec7ea5c6132e5ff3a2fd
oai_identifier_str oai:ri.conicet.gov.ar:11336/101809
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Quantum phases in the frustrated Heisenberg model on the bilayer honeycomb latticeZhang, HaoArlego, Marcelo José FabiánLamas, Carlos AlbertoQuantumphasesfrustratedHeisenberghoneycombbilayerlatticehttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We use a combination of analytical and numerical techniques to study the phase diagram of the frustrated Heisenberg model on the bilayer honeycomb lattice. Using the Schwinger-boson description of the spin operators followed by a mean-field decoupling, the magnetic phase diagram is studied as a function of the frustration and the interlayer couplings. The presence of both magnetically ordered and disordered phases is investigated by means of the evaluation of ground-state energy, spin gap, local magnetization, and spin-spin correlations. We observe a phase with a spin gap and short-range Néel correlations that survives for nonzero next-nearest-neighbor interaction and interlayer coupling. Furthermore, we detect signatures of a reentrant behavior in the melting of the Néel phase and symmetry restoring when the system undergoes a transition from an on-layer nematic valence-bond crystal phase to an interlayer valence-bond crystal phase. We complement our work with exact diagonalization on small clusters and dimer-series expansion calculations, together with a linear spin-wave approach to study the phase diagram as a function of the spin S, the frustration, and the interlayer couplings.Fil: Zhang, Hao. Universidad de Tokio; JapónFil: Arlego, Marcelo José Fabián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Lamas, Carlos Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaAmerican Physical Society2014-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/101809Zhang, Hao; Arlego, Marcelo José Fabián; Lamas, Carlos Alberto; Quantum phases in the frustrated Heisenberg model on the bilayer honeycomb lattice; American Physical Society; Physical Review B: Condensed Matter and Materials Physics; 89; 1-2014; 24403-244111098-0121CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://journals.aps.org/prb/abstract/10.1103/PhysRevB.89.024403info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevB.89.024403info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:02:23Zoai:ri.conicet.gov.ar:11336/101809instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:02:23.405CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Quantum phases in the frustrated Heisenberg model on the bilayer honeycomb lattice
title Quantum phases in the frustrated Heisenberg model on the bilayer honeycomb lattice
spellingShingle Quantum phases in the frustrated Heisenberg model on the bilayer honeycomb lattice
Zhang, Hao
Quantum
phases
frustrated
Heisenberg
honeycomb
bilayer
lattice
title_short Quantum phases in the frustrated Heisenberg model on the bilayer honeycomb lattice
title_full Quantum phases in the frustrated Heisenberg model on the bilayer honeycomb lattice
title_fullStr Quantum phases in the frustrated Heisenberg model on the bilayer honeycomb lattice
title_full_unstemmed Quantum phases in the frustrated Heisenberg model on the bilayer honeycomb lattice
title_sort Quantum phases in the frustrated Heisenberg model on the bilayer honeycomb lattice
dc.creator.none.fl_str_mv Zhang, Hao
Arlego, Marcelo José Fabián
Lamas, Carlos Alberto
author Zhang, Hao
author_facet Zhang, Hao
Arlego, Marcelo José Fabián
Lamas, Carlos Alberto
author_role author
author2 Arlego, Marcelo José Fabián
Lamas, Carlos Alberto
author2_role author
author
dc.subject.none.fl_str_mv Quantum
phases
frustrated
Heisenberg
honeycomb
bilayer
lattice
topic Quantum
phases
frustrated
Heisenberg
honeycomb
bilayer
lattice
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We use a combination of analytical and numerical techniques to study the phase diagram of the frustrated Heisenberg model on the bilayer honeycomb lattice. Using the Schwinger-boson description of the spin operators followed by a mean-field decoupling, the magnetic phase diagram is studied as a function of the frustration and the interlayer couplings. The presence of both magnetically ordered and disordered phases is investigated by means of the evaluation of ground-state energy, spin gap, local magnetization, and spin-spin correlations. We observe a phase with a spin gap and short-range Néel correlations that survives for nonzero next-nearest-neighbor interaction and interlayer coupling. Furthermore, we detect signatures of a reentrant behavior in the melting of the Néel phase and symmetry restoring when the system undergoes a transition from an on-layer nematic valence-bond crystal phase to an interlayer valence-bond crystal phase. We complement our work with exact diagonalization on small clusters and dimer-series expansion calculations, together with a linear spin-wave approach to study the phase diagram as a function of the spin S, the frustration, and the interlayer couplings.
Fil: Zhang, Hao. Universidad de Tokio; Japón
Fil: Arlego, Marcelo José Fabián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Lamas, Carlos Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
description We use a combination of analytical and numerical techniques to study the phase diagram of the frustrated Heisenberg model on the bilayer honeycomb lattice. Using the Schwinger-boson description of the spin operators followed by a mean-field decoupling, the magnetic phase diagram is studied as a function of the frustration and the interlayer couplings. The presence of both magnetically ordered and disordered phases is investigated by means of the evaluation of ground-state energy, spin gap, local magnetization, and spin-spin correlations. We observe a phase with a spin gap and short-range Néel correlations that survives for nonzero next-nearest-neighbor interaction and interlayer coupling. Furthermore, we detect signatures of a reentrant behavior in the melting of the Néel phase and symmetry restoring when the system undergoes a transition from an on-layer nematic valence-bond crystal phase to an interlayer valence-bond crystal phase. We complement our work with exact diagonalization on small clusters and dimer-series expansion calculations, together with a linear spin-wave approach to study the phase diagram as a function of the spin S, the frustration, and the interlayer couplings.
publishDate 2014
dc.date.none.fl_str_mv 2014-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/101809
Zhang, Hao; Arlego, Marcelo José Fabián; Lamas, Carlos Alberto; Quantum phases in the frustrated Heisenberg model on the bilayer honeycomb lattice; American Physical Society; Physical Review B: Condensed Matter and Materials Physics; 89; 1-2014; 24403-24411
1098-0121
CONICET Digital
CONICET
url http://hdl.handle.net/11336/101809
identifier_str_mv Zhang, Hao; Arlego, Marcelo José Fabián; Lamas, Carlos Alberto; Quantum phases in the frustrated Heisenberg model on the bilayer honeycomb lattice; American Physical Society; Physical Review B: Condensed Matter and Materials Physics; 89; 1-2014; 24403-24411
1098-0121
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://journals.aps.org/prb/abstract/10.1103/PhysRevB.89.024403
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevB.89.024403
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842980013130907648
score 12.993085