Numerical Jordan-Wigner approach for two-dimensional spin systems

Autores
Cabra, Daniel Carlos; Rossini, Gerardo Luis
Año de publicación
2004
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We present a numerical self-consistent variational approach based on the Jordan-Wigner transformation for two-dimensional spin systems. We apply it to the study of the well-known quantum (S = 1/2 ) antiferromagnetic XXZ system as a function of the easy-axis anisotropy Δ on a periodic square lattice. For the SU (2) case the method converges to a Néel ordered ground state irrespective of the input density profile used and in accordance with other studies. This shows the potential utility of the proposed method to investigate more complicated situations such as frustrated or disordered systems.
Facultad de Ciencias Exactas
Materia
Física
Physics
Antiferromagnetism
Square lattice
Quantum statistical mechanics
Mathematical physics
Frustration
Function (mathematics)
Quantum mechanics
Ground state
Spin-½
Anisotropy
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/126489

id SEDICI_b0922a6ff18e3994cc41c14282b9f163
oai_identifier_str oai:sedici.unlp.edu.ar:10915/126489
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Numerical Jordan-Wigner approach for two-dimensional spin systemsCabra, Daniel CarlosRossini, Gerardo LuisFísicaPhysicsAntiferromagnetismSquare latticeQuantum statistical mechanicsMathematical physicsFrustrationFunction (mathematics)Quantum mechanicsGround stateSpin-½AnisotropyWe present a numerical self-consistent variational approach based on the Jordan-Wigner transformation for two-dimensional spin systems. We apply it to the study of the well-known quantum (S = 1/2 ) antiferromagnetic XXZ system as a function of the easy-axis anisotropy Δ on a periodic square lattice. For the SU (2) case the method converges to a Néel ordered ground state irrespective of the input density profile used and in accordance with other studies. This shows the potential utility of the proposed method to investigate more complicated situations such as frustrated or disordered systems.Facultad de Ciencias Exactas2004-05-28info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/126489enginfo:eu-repo/semantics/altIdentifier/issn/1098-0121info:eu-repo/semantics/altIdentifier/issn/1550-235Xinfo:eu-repo/semantics/altIdentifier/arxiv/cond-mat/0310131info:eu-repo/semantics/altIdentifier/doi/10.1103/physrevb.69.184425info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:30:22Zoai:sedici.unlp.edu.ar:10915/126489Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:30:23.188SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Numerical Jordan-Wigner approach for two-dimensional spin systems
title Numerical Jordan-Wigner approach for two-dimensional spin systems
spellingShingle Numerical Jordan-Wigner approach for two-dimensional spin systems
Cabra, Daniel Carlos
Física
Physics
Antiferromagnetism
Square lattice
Quantum statistical mechanics
Mathematical physics
Frustration
Function (mathematics)
Quantum mechanics
Ground state
Spin-½
Anisotropy
title_short Numerical Jordan-Wigner approach for two-dimensional spin systems
title_full Numerical Jordan-Wigner approach for two-dimensional spin systems
title_fullStr Numerical Jordan-Wigner approach for two-dimensional spin systems
title_full_unstemmed Numerical Jordan-Wigner approach for two-dimensional spin systems
title_sort Numerical Jordan-Wigner approach for two-dimensional spin systems
dc.creator.none.fl_str_mv Cabra, Daniel Carlos
Rossini, Gerardo Luis
author Cabra, Daniel Carlos
author_facet Cabra, Daniel Carlos
Rossini, Gerardo Luis
author_role author
author2 Rossini, Gerardo Luis
author2_role author
dc.subject.none.fl_str_mv Física
Physics
Antiferromagnetism
Square lattice
Quantum statistical mechanics
Mathematical physics
Frustration
Function (mathematics)
Quantum mechanics
Ground state
Spin-½
Anisotropy
topic Física
Physics
Antiferromagnetism
Square lattice
Quantum statistical mechanics
Mathematical physics
Frustration
Function (mathematics)
Quantum mechanics
Ground state
Spin-½
Anisotropy
dc.description.none.fl_txt_mv We present a numerical self-consistent variational approach based on the Jordan-Wigner transformation for two-dimensional spin systems. We apply it to the study of the well-known quantum (S = 1/2 ) antiferromagnetic XXZ system as a function of the easy-axis anisotropy Δ on a periodic square lattice. For the SU (2) case the method converges to a Néel ordered ground state irrespective of the input density profile used and in accordance with other studies. This shows the potential utility of the proposed method to investigate more complicated situations such as frustrated or disordered systems.
Facultad de Ciencias Exactas
description We present a numerical self-consistent variational approach based on the Jordan-Wigner transformation for two-dimensional spin systems. We apply it to the study of the well-known quantum (S = 1/2 ) antiferromagnetic XXZ system as a function of the easy-axis anisotropy Δ on a periodic square lattice. For the SU (2) case the method converges to a Néel ordered ground state irrespective of the input density profile used and in accordance with other studies. This shows the potential utility of the proposed method to investigate more complicated situations such as frustrated or disordered systems.
publishDate 2004
dc.date.none.fl_str_mv 2004-05-28
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/126489
url http://sedici.unlp.edu.ar/handle/10915/126489
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/1098-0121
info:eu-repo/semantics/altIdentifier/issn/1550-235X
info:eu-repo/semantics/altIdentifier/arxiv/cond-mat/0310131
info:eu-repo/semantics/altIdentifier/doi/10.1103/physrevb.69.184425
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616183610867712
score 13.070432