Numerical Jordan-Wigner approach for two-dimensional spin systems
- Autores
- Cabra, Daniel Carlos; Rossini, Gerardo Luis
- Año de publicación
- 2004
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We present a numerical self-consistent variational approach based on the Jordan-Wigner transformation for two-dimensional spin systems. We apply it to the study of the well-known quantum (S = 1/2 ) antiferromagnetic XXZ system as a function of the easy-axis anisotropy Δ on a periodic square lattice. For the SU (2) case the method converges to a Néel ordered ground state irrespective of the input density profile used and in accordance with other studies. This shows the potential utility of the proposed method to investigate more complicated situations such as frustrated or disordered systems.
Facultad de Ciencias Exactas - Materia
-
Física
Physics
Antiferromagnetism
Square lattice
Quantum statistical mechanics
Mathematical physics
Frustration
Function (mathematics)
Quantum mechanics
Ground state
Spin-½
Anisotropy - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/126489
Ver los metadatos del registro completo
id |
SEDICI_b0922a6ff18e3994cc41c14282b9f163 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/126489 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Numerical Jordan-Wigner approach for two-dimensional spin systemsCabra, Daniel CarlosRossini, Gerardo LuisFísicaPhysicsAntiferromagnetismSquare latticeQuantum statistical mechanicsMathematical physicsFrustrationFunction (mathematics)Quantum mechanicsGround stateSpin-½AnisotropyWe present a numerical self-consistent variational approach based on the Jordan-Wigner transformation for two-dimensional spin systems. We apply it to the study of the well-known quantum (S = 1/2 ) antiferromagnetic XXZ system as a function of the easy-axis anisotropy Δ on a periodic square lattice. For the SU (2) case the method converges to a Néel ordered ground state irrespective of the input density profile used and in accordance with other studies. This shows the potential utility of the proposed method to investigate more complicated situations such as frustrated or disordered systems.Facultad de Ciencias Exactas2004-05-28info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/126489enginfo:eu-repo/semantics/altIdentifier/issn/1098-0121info:eu-repo/semantics/altIdentifier/issn/1550-235Xinfo:eu-repo/semantics/altIdentifier/arxiv/cond-mat/0310131info:eu-repo/semantics/altIdentifier/doi/10.1103/physrevb.69.184425info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:30:22Zoai:sedici.unlp.edu.ar:10915/126489Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:30:23.188SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Numerical Jordan-Wigner approach for two-dimensional spin systems |
title |
Numerical Jordan-Wigner approach for two-dimensional spin systems |
spellingShingle |
Numerical Jordan-Wigner approach for two-dimensional spin systems Cabra, Daniel Carlos Física Physics Antiferromagnetism Square lattice Quantum statistical mechanics Mathematical physics Frustration Function (mathematics) Quantum mechanics Ground state Spin-½ Anisotropy |
title_short |
Numerical Jordan-Wigner approach for two-dimensional spin systems |
title_full |
Numerical Jordan-Wigner approach for two-dimensional spin systems |
title_fullStr |
Numerical Jordan-Wigner approach for two-dimensional spin systems |
title_full_unstemmed |
Numerical Jordan-Wigner approach for two-dimensional spin systems |
title_sort |
Numerical Jordan-Wigner approach for two-dimensional spin systems |
dc.creator.none.fl_str_mv |
Cabra, Daniel Carlos Rossini, Gerardo Luis |
author |
Cabra, Daniel Carlos |
author_facet |
Cabra, Daniel Carlos Rossini, Gerardo Luis |
author_role |
author |
author2 |
Rossini, Gerardo Luis |
author2_role |
author |
dc.subject.none.fl_str_mv |
Física Physics Antiferromagnetism Square lattice Quantum statistical mechanics Mathematical physics Frustration Function (mathematics) Quantum mechanics Ground state Spin-½ Anisotropy |
topic |
Física Physics Antiferromagnetism Square lattice Quantum statistical mechanics Mathematical physics Frustration Function (mathematics) Quantum mechanics Ground state Spin-½ Anisotropy |
dc.description.none.fl_txt_mv |
We present a numerical self-consistent variational approach based on the Jordan-Wigner transformation for two-dimensional spin systems. We apply it to the study of the well-known quantum (S = 1/2 ) antiferromagnetic XXZ system as a function of the easy-axis anisotropy Δ on a periodic square lattice. For the SU (2) case the method converges to a Néel ordered ground state irrespective of the input density profile used and in accordance with other studies. This shows the potential utility of the proposed method to investigate more complicated situations such as frustrated or disordered systems. Facultad de Ciencias Exactas |
description |
We present a numerical self-consistent variational approach based on the Jordan-Wigner transformation for two-dimensional spin systems. We apply it to the study of the well-known quantum (S = 1/2 ) antiferromagnetic XXZ system as a function of the easy-axis anisotropy Δ on a periodic square lattice. For the SU (2) case the method converges to a Néel ordered ground state irrespective of the input density profile used and in accordance with other studies. This shows the potential utility of the proposed method to investigate more complicated situations such as frustrated or disordered systems. |
publishDate |
2004 |
dc.date.none.fl_str_mv |
2004-05-28 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/126489 |
url |
http://sedici.unlp.edu.ar/handle/10915/126489 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/1098-0121 info:eu-repo/semantics/altIdentifier/issn/1550-235X info:eu-repo/semantics/altIdentifier/arxiv/cond-mat/0310131 info:eu-repo/semantics/altIdentifier/doi/10.1103/physrevb.69.184425 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616183610867712 |
score |
13.070432 |