Self consistent study of the quantum phases in a frustrated antiferromagnet on the bilayer honeycomb lattice

Autores
Arlego, Marcelo José Fabián; Lamas, Carlos Alberto; Zhang, Hao
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We study the frustrated Heisenberg model on the bilayer honeycomb lattice. The ground-state energy and spin gap are calculated, using different bosonic representations at mean field level and numerical calculations, to explore different sectors of the phase diagram. In particular we make use of a bond operator formalism and series expansion calculations to study the extent of dimer inter-layer phase. On the other hand we use the Schwinger boson method and exact diagonalization on small systems to analyze the evolution of on-layer phases. In this case we specifically observe a phase that presents a spin gap and short range Neel correlations that survives even in the presence of non-zero next-nearest-neighbor interaction and inter-layer coupling.
Instituto de Física La Plata
Materia
Física
Physics
Antiferromagnetism
Series expansion
Bilayer
Heisenberg model
Mean field theory
Condensed matter physics
Quantum mechanics
Boson
Quantum phases
Phase diagram
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/3.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/127061

id SEDICI_d2bd83687e0e2c8543dd88a55732573c
oai_identifier_str oai:sedici.unlp.edu.ar:10915/127061
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Self consistent study of the quantum phases in a frustrated antiferromagnet on the bilayer honeycomb latticeArlego, Marcelo José FabiánLamas, Carlos AlbertoZhang, HaoFísicaPhysicsAntiferromagnetismSeries expansionBilayerHeisenberg modelMean field theoryCondensed matter physicsQuantum mechanicsBosonQuantum phasesPhase diagramWe study the frustrated Heisenberg model on the bilayer honeycomb lattice. The ground-state energy and spin gap are calculated, using different bosonic representations at mean field level and numerical calculations, to explore different sectors of the phase diagram. In particular we make use of a bond operator formalism and series expansion calculations to study the extent of dimer inter-layer phase. On the other hand we use the Schwinger boson method and exact diagonalization on small systems to analyze the evolution of on-layer phases. In this case we specifically observe a phase that presents a spin gap and short range Neel correlations that survives even in the presence of non-zero next-nearest-neighbor interaction and inter-layer coupling.Instituto de Física La Plata2014-12-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/127061enginfo:eu-repo/semantics/altIdentifier/issn/1742-6588info:eu-repo/semantics/altIdentifier/issn/1742-6596info:eu-repo/semantics/altIdentifier/arxiv/1501.04930info:eu-repo/semantics/altIdentifier/doi/10.1088/1742-6596/568/4/042019info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/3.0/Creative Commons Attribution 3.0 Unported (CC BY 3.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:30:38Zoai:sedici.unlp.edu.ar:10915/127061Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:30:39.159SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Self consistent study of the quantum phases in a frustrated antiferromagnet on the bilayer honeycomb lattice
title Self consistent study of the quantum phases in a frustrated antiferromagnet on the bilayer honeycomb lattice
spellingShingle Self consistent study of the quantum phases in a frustrated antiferromagnet on the bilayer honeycomb lattice
Arlego, Marcelo José Fabián
Física
Physics
Antiferromagnetism
Series expansion
Bilayer
Heisenberg model
Mean field theory
Condensed matter physics
Quantum mechanics
Boson
Quantum phases
Phase diagram
title_short Self consistent study of the quantum phases in a frustrated antiferromagnet on the bilayer honeycomb lattice
title_full Self consistent study of the quantum phases in a frustrated antiferromagnet on the bilayer honeycomb lattice
title_fullStr Self consistent study of the quantum phases in a frustrated antiferromagnet on the bilayer honeycomb lattice
title_full_unstemmed Self consistent study of the quantum phases in a frustrated antiferromagnet on the bilayer honeycomb lattice
title_sort Self consistent study of the quantum phases in a frustrated antiferromagnet on the bilayer honeycomb lattice
dc.creator.none.fl_str_mv Arlego, Marcelo José Fabián
Lamas, Carlos Alberto
Zhang, Hao
author Arlego, Marcelo José Fabián
author_facet Arlego, Marcelo José Fabián
Lamas, Carlos Alberto
Zhang, Hao
author_role author
author2 Lamas, Carlos Alberto
Zhang, Hao
author2_role author
author
dc.subject.none.fl_str_mv Física
Physics
Antiferromagnetism
Series expansion
Bilayer
Heisenberg model
Mean field theory
Condensed matter physics
Quantum mechanics
Boson
Quantum phases
Phase diagram
topic Física
Physics
Antiferromagnetism
Series expansion
Bilayer
Heisenberg model
Mean field theory
Condensed matter physics
Quantum mechanics
Boson
Quantum phases
Phase diagram
dc.description.none.fl_txt_mv We study the frustrated Heisenberg model on the bilayer honeycomb lattice. The ground-state energy and spin gap are calculated, using different bosonic representations at mean field level and numerical calculations, to explore different sectors of the phase diagram. In particular we make use of a bond operator formalism and series expansion calculations to study the extent of dimer inter-layer phase. On the other hand we use the Schwinger boson method and exact diagonalization on small systems to analyze the evolution of on-layer phases. In this case we specifically observe a phase that presents a spin gap and short range Neel correlations that survives even in the presence of non-zero next-nearest-neighbor interaction and inter-layer coupling.
Instituto de Física La Plata
description We study the frustrated Heisenberg model on the bilayer honeycomb lattice. The ground-state energy and spin gap are calculated, using different bosonic representations at mean field level and numerical calculations, to explore different sectors of the phase diagram. In particular we make use of a bond operator formalism and series expansion calculations to study the extent of dimer inter-layer phase. On the other hand we use the Schwinger boson method and exact diagonalization on small systems to analyze the evolution of on-layer phases. In this case we specifically observe a phase that presents a spin gap and short range Neel correlations that survives even in the presence of non-zero next-nearest-neighbor interaction and inter-layer coupling.
publishDate 2014
dc.date.none.fl_str_mv 2014-12-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/127061
url http://sedici.unlp.edu.ar/handle/10915/127061
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/1742-6588
info:eu-repo/semantics/altIdentifier/issn/1742-6596
info:eu-repo/semantics/altIdentifier/arxiv/1501.04930
info:eu-repo/semantics/altIdentifier/doi/10.1088/1742-6596/568/4/042019
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/3.0/
Creative Commons Attribution 3.0 Unported (CC BY 3.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/3.0/
Creative Commons Attribution 3.0 Unported (CC BY 3.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616186778615808
score 13.070432