Solutions of the divergence operator on John domains
- Autores
- Acosta, Gabriel; Durán, Ricardo G.; Muschietti, María Amelia
- Año de publicación
- 2005
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- If Ω ⊂ Rn is a bounded domain, the existence of solutions u ∈ W01, p (Ω) of div u = f for f ∈ Lp (Ω) with vanishing mean value and 1 < p < ∞, is a basic result in the analysis of the Stokes equations. It is known that the result holds when Ω is a Lipschitz domain and that it is not valid for domains with external cusps. In this paper we prove that the result holds for John domains. Our proof is constructive: the solution u is given by an explicit integral operator acting on f. To prove that u ∈ W01, p (Ω) we make use of the Calderón-Zygmund singular integral operator theory and the Hardy-Littlewood maximal function. For domains satisfying the separation property introduced in [S. Buckley, P. Koskela, Sobolev-Poincaré implies John, Math. Res. Lett. 2 (5) (1995) 577-593], and 1 < p < n, we also prove a converse result, thus characterizing in this case the domains for which a continuous right inverse of the divergence exists. In particular, our result applies to simply connected planar domains because they satisfy the separation property.
Departamento de Matemática - Materia
-
Ciencias Exactas
Divergence operator
John domains
Singular integrals - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/83153
Ver los metadatos del registro completo
id |
SEDICI_7699aa0684bff44483c64e36c331915b |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/83153 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Solutions of the divergence operator on John domainsAcosta, GabrielDurán, Ricardo G.Muschietti, María AmeliaCiencias ExactasDivergence operatorJohn domainsSingular integralsIf Ω ⊂ Rn is a bounded domain, the existence of solutions u ∈ W01, p (Ω) of div u = f for f ∈ Lp (Ω) with vanishing mean value and 1 < p < ∞, is a basic result in the analysis of the Stokes equations. It is known that the result holds when Ω is a Lipschitz domain and that it is not valid for domains with external cusps. In this paper we prove that the result holds for John domains. Our proof is constructive: the solution u is given by an explicit integral operator acting on f. To prove that u ∈ W01, p (Ω) we make use of the Calderón-Zygmund singular integral operator theory and the Hardy-Littlewood maximal function. For domains satisfying the separation property introduced in [S. Buckley, P. Koskela, Sobolev-Poincaré implies John, Math. Res. Lett. 2 (5) (1995) 577-593], and 1 < p < n, we also prove a converse result, thus characterizing in this case the domains for which a continuous right inverse of the divergence exists. In particular, our result applies to simply connected planar domains because they satisfy the separation property.Departamento de Matemática2005-11-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf373-401http://sedici.unlp.edu.ar/handle/10915/83153enginfo:eu-repo/semantics/altIdentifier/issn/0001-8708info:eu-repo/semantics/altIdentifier/doi/10.1016/j.aim.2005.09.004info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:48:00Zoai:sedici.unlp.edu.ar:10915/83153Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:48:01.155SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Solutions of the divergence operator on John domains |
title |
Solutions of the divergence operator on John domains |
spellingShingle |
Solutions of the divergence operator on John domains Acosta, Gabriel Ciencias Exactas Divergence operator John domains Singular integrals |
title_short |
Solutions of the divergence operator on John domains |
title_full |
Solutions of the divergence operator on John domains |
title_fullStr |
Solutions of the divergence operator on John domains |
title_full_unstemmed |
Solutions of the divergence operator on John domains |
title_sort |
Solutions of the divergence operator on John domains |
dc.creator.none.fl_str_mv |
Acosta, Gabriel Durán, Ricardo G. Muschietti, María Amelia |
author |
Acosta, Gabriel |
author_facet |
Acosta, Gabriel Durán, Ricardo G. Muschietti, María Amelia |
author_role |
author |
author2 |
Durán, Ricardo G. Muschietti, María Amelia |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Ciencias Exactas Divergence operator John domains Singular integrals |
topic |
Ciencias Exactas Divergence operator John domains Singular integrals |
dc.description.none.fl_txt_mv |
If Ω ⊂ Rn is a bounded domain, the existence of solutions u ∈ W01, p (Ω) of div u = f for f ∈ Lp (Ω) with vanishing mean value and 1 < p < ∞, is a basic result in the analysis of the Stokes equations. It is known that the result holds when Ω is a Lipschitz domain and that it is not valid for domains with external cusps. In this paper we prove that the result holds for John domains. Our proof is constructive: the solution u is given by an explicit integral operator acting on f. To prove that u ∈ W01, p (Ω) we make use of the Calderón-Zygmund singular integral operator theory and the Hardy-Littlewood maximal function. For domains satisfying the separation property introduced in [S. Buckley, P. Koskela, Sobolev-Poincaré implies John, Math. Res. Lett. 2 (5) (1995) 577-593], and 1 < p < n, we also prove a converse result, thus characterizing in this case the domains for which a continuous right inverse of the divergence exists. In particular, our result applies to simply connected planar domains because they satisfy the separation property. Departamento de Matemática |
description |
If Ω ⊂ Rn is a bounded domain, the existence of solutions u ∈ W01, p (Ω) of div u = f for f ∈ Lp (Ω) with vanishing mean value and 1 < p < ∞, is a basic result in the analysis of the Stokes equations. It is known that the result holds when Ω is a Lipschitz domain and that it is not valid for domains with external cusps. In this paper we prove that the result holds for John domains. Our proof is constructive: the solution u is given by an explicit integral operator acting on f. To prove that u ∈ W01, p (Ω) we make use of the Calderón-Zygmund singular integral operator theory and the Hardy-Littlewood maximal function. For domains satisfying the separation property introduced in [S. Buckley, P. Koskela, Sobolev-Poincaré implies John, Math. Res. Lett. 2 (5) (1995) 577-593], and 1 < p < n, we also prove a converse result, thus characterizing in this case the domains for which a continuous right inverse of the divergence exists. In particular, our result applies to simply connected planar domains because they satisfy the separation property. |
publishDate |
2005 |
dc.date.none.fl_str_mv |
2005-11-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/83153 |
url |
http://sedici.unlp.edu.ar/handle/10915/83153 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/0001-8708 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.aim.2005.09.004 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 373-401 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842260353413545984 |
score |
13.13397 |