Korn inequality and divergence operator: Counterexamples and optimality of weighted estimates
- Autores
- Acosta Rodriguez, Gabriel; Duran, Ricardo Guillermo; Lopez Garcia, Fernando Alfonso
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The Korn inequality and related results on solutions of the divergence in Sobolev spaces have been widely studied since the pioneering works by Korn and Friedrichs. In particular, it is known that this inequality is valid for Lipschitz domains as well as for the more general class of John domains. On the other hand, a few known counterexamples show that those results are not valid for certain bounded domains having external cusps. The goal of this paper is to give very simple counterexamples for a class of cuspidal domains in Rn. Moreover, we show that these counterexamples can be used to prove the optimality of recently obtained results involving weighted Sobolev spaces.
Fil: Acosta Rodriguez, Gabriel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Duran, Ricardo Guillermo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Lopez Garcia, Fernando Alfonso. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Korn Inequality
Divergence Operator
Bad Domains - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/14883
Ver los metadatos del registro completo
id |
CONICETDig_7a63ad44349e452599b5c374dd3dccab |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/14883 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Korn inequality and divergence operator: Counterexamples and optimality of weighted estimatesAcosta Rodriguez, GabrielDuran, Ricardo GuillermoLopez Garcia, Fernando AlfonsoKorn InequalityDivergence OperatorBad Domainshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The Korn inequality and related results on solutions of the divergence in Sobolev spaces have been widely studied since the pioneering works by Korn and Friedrichs. In particular, it is known that this inequality is valid for Lipschitz domains as well as for the more general class of John domains. On the other hand, a few known counterexamples show that those results are not valid for certain bounded domains having external cusps. The goal of this paper is to give very simple counterexamples for a class of cuspidal domains in Rn. Moreover, we show that these counterexamples can be used to prove the optimality of recently obtained results involving weighted Sobolev spaces.Fil: Acosta Rodriguez, Gabriel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Duran, Ricardo Guillermo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Lopez Garcia, Fernando Alfonso. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaAmerican Mathematical Society2013-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/14883Acosta Rodriguez, Gabriel; Duran, Ricardo Guillermo; Lopez Garcia, Fernando Alfonso; Korn inequality and divergence operator: Counterexamples and optimality of weighted estimates; American Mathematical Society; Proceedings Of The American Mathematical Society; 141; 1; 1-2013; 217-2320002-9939enginfo:eu-repo/semantics/altIdentifier/url/http://www.ams.org/journals/proc/2013-141-01/S0002-9939-2012-11408-X/info:eu-repo/semantics/altIdentifier/doi/10.1090/S0002-9939-2012-11408-Xinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:00:33Zoai:ri.conicet.gov.ar:11336/14883instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:00:33.309CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Korn inequality and divergence operator: Counterexamples and optimality of weighted estimates |
title |
Korn inequality and divergence operator: Counterexamples and optimality of weighted estimates |
spellingShingle |
Korn inequality and divergence operator: Counterexamples and optimality of weighted estimates Acosta Rodriguez, Gabriel Korn Inequality Divergence Operator Bad Domains |
title_short |
Korn inequality and divergence operator: Counterexamples and optimality of weighted estimates |
title_full |
Korn inequality and divergence operator: Counterexamples and optimality of weighted estimates |
title_fullStr |
Korn inequality and divergence operator: Counterexamples and optimality of weighted estimates |
title_full_unstemmed |
Korn inequality and divergence operator: Counterexamples and optimality of weighted estimates |
title_sort |
Korn inequality and divergence operator: Counterexamples and optimality of weighted estimates |
dc.creator.none.fl_str_mv |
Acosta Rodriguez, Gabriel Duran, Ricardo Guillermo Lopez Garcia, Fernando Alfonso |
author |
Acosta Rodriguez, Gabriel |
author_facet |
Acosta Rodriguez, Gabriel Duran, Ricardo Guillermo Lopez Garcia, Fernando Alfonso |
author_role |
author |
author2 |
Duran, Ricardo Guillermo Lopez Garcia, Fernando Alfonso |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Korn Inequality Divergence Operator Bad Domains |
topic |
Korn Inequality Divergence Operator Bad Domains |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The Korn inequality and related results on solutions of the divergence in Sobolev spaces have been widely studied since the pioneering works by Korn and Friedrichs. In particular, it is known that this inequality is valid for Lipschitz domains as well as for the more general class of John domains. On the other hand, a few known counterexamples show that those results are not valid for certain bounded domains having external cusps. The goal of this paper is to give very simple counterexamples for a class of cuspidal domains in Rn. Moreover, we show that these counterexamples can be used to prove the optimality of recently obtained results involving weighted Sobolev spaces. Fil: Acosta Rodriguez, Gabriel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Duran, Ricardo Guillermo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Lopez Garcia, Fernando Alfonso. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
The Korn inequality and related results on solutions of the divergence in Sobolev spaces have been widely studied since the pioneering works by Korn and Friedrichs. In particular, it is known that this inequality is valid for Lipschitz domains as well as for the more general class of John domains. On the other hand, a few known counterexamples show that those results are not valid for certain bounded domains having external cusps. The goal of this paper is to give very simple counterexamples for a class of cuspidal domains in Rn. Moreover, we show that these counterexamples can be used to prove the optimality of recently obtained results involving weighted Sobolev spaces. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/14883 Acosta Rodriguez, Gabriel; Duran, Ricardo Guillermo; Lopez Garcia, Fernando Alfonso; Korn inequality and divergence operator: Counterexamples and optimality of weighted estimates; American Mathematical Society; Proceedings Of The American Mathematical Society; 141; 1; 1-2013; 217-232 0002-9939 |
url |
http://hdl.handle.net/11336/14883 |
identifier_str_mv |
Acosta Rodriguez, Gabriel; Duran, Ricardo Guillermo; Lopez Garcia, Fernando Alfonso; Korn inequality and divergence operator: Counterexamples and optimality of weighted estimates; American Mathematical Society; Proceedings Of The American Mathematical Society; 141; 1; 1-2013; 217-232 0002-9939 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.ams.org/journals/proc/2013-141-01/S0002-9939-2012-11408-X/ info:eu-repo/semantics/altIdentifier/doi/10.1090/S0002-9939-2012-11408-X |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Mathematical Society |
publisher.none.fl_str_mv |
American Mathematical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269645129646080 |
score |
13.13397 |