Solutions of the divergence and analysis of the stokes equations in planar Hölder-α domains

Autores
Duran, Ricardo Guillermo; Lopez Garcia, Fernando Alfonso
Año de publicación
2010
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
If Ω ⊂ n is a bounded domain, the existence of solutions u∈ H10(Ω)n of div u = f for f ∈ L 2(Ω) with vanishing mean value, is a basic result in the analysis of the Stokes equations. In particular, it allows to show the existence of a solution (u,p)∈ H10(Ω)n× L2(Ω ), where u is the velocity and p the pressure. It is known that the above-mentioned result holds when Ω is a Lipschitz domain and that it is not valid for arbitrary Hölder-α domains. In this paper we prove that if Ω is a planar simply connected Hölder-α domain, there exist solutions of div u = f in appropriate weighted Sobolev spaces, where the weights are powers of the distance to the boundary. Moreover, we show that the powers of the distance in the results obtained are optimal. For some particular domains with an external cusp, we apply our results to show the well-posedness of the Stokes equations in appropriate weighted Sobolev spaces obtaining as a consequence the existence of a solution (u,p)∈ H10(Ω) n× Lr(Ω) for some r < 2 depending on the power of the cusp. © 2010 World Scientific Publishing Company.
Fil: Duran, Ricardo Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Lopez Garcia, Fernando Alfonso. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Materia
DIVERGENCE OPERATOR
HÓLDER-α DOMAINS
STOKES EQUATIONS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/68478

id CONICETDig_41270fe009e7b374ac57e96bcc89e5b3
oai_identifier_str oai:ri.conicet.gov.ar:11336/68478
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Solutions of the divergence and analysis of the stokes equations in planar Hölder-α domainsDuran, Ricardo GuillermoLopez Garcia, Fernando AlfonsoDIVERGENCE OPERATORHÓLDER-α DOMAINSSTOKES EQUATIONShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1If Ω ⊂ n is a bounded domain, the existence of solutions u∈ H10(Ω)n of div u = f for f ∈ L 2(Ω) with vanishing mean value, is a basic result in the analysis of the Stokes equations. In particular, it allows to show the existence of a solution (u,p)∈ H10(Ω)n× L2(Ω ), where u is the velocity and p the pressure. It is known that the above-mentioned result holds when Ω is a Lipschitz domain and that it is not valid for arbitrary Hölder-α domains. In this paper we prove that if Ω is a planar simply connected Hölder-α domain, there exist solutions of div u = f in appropriate weighted Sobolev spaces, where the weights are powers of the distance to the boundary. Moreover, we show that the powers of the distance in the results obtained are optimal. For some particular domains with an external cusp, we apply our results to show the well-posedness of the Stokes equations in appropriate weighted Sobolev spaces obtaining as a consequence the existence of a solution (u,p)∈ H10(Ω) n× Lr(Ω) for some r < 2 depending on the power of the cusp. © 2010 World Scientific Publishing Company.Fil: Duran, Ricardo Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Lopez Garcia, Fernando Alfonso. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaWorld Scientific2010-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/68478Duran, Ricardo Guillermo; Lopez Garcia, Fernando Alfonso; Solutions of the divergence and analysis of the stokes equations in planar Hölder-α domains; World Scientific; Mathematical Models And Methods In Applied Sciences; 20; 1; 1-2010; 95-1200218-2025CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1142/S0218202510004167info:eu-repo/semantics/altIdentifier/url/https://www.worldscientific.com/doi/abs/10.1142/S0218202510004167info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:37:17Zoai:ri.conicet.gov.ar:11336/68478instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:37:18.116CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Solutions of the divergence and analysis of the stokes equations in planar Hölder-α domains
title Solutions of the divergence and analysis of the stokes equations in planar Hölder-α domains
spellingShingle Solutions of the divergence and analysis of the stokes equations in planar Hölder-α domains
Duran, Ricardo Guillermo
DIVERGENCE OPERATOR
HÓLDER-α DOMAINS
STOKES EQUATIONS
title_short Solutions of the divergence and analysis of the stokes equations in planar Hölder-α domains
title_full Solutions of the divergence and analysis of the stokes equations in planar Hölder-α domains
title_fullStr Solutions of the divergence and analysis of the stokes equations in planar Hölder-α domains
title_full_unstemmed Solutions of the divergence and analysis of the stokes equations in planar Hölder-α domains
title_sort Solutions of the divergence and analysis of the stokes equations in planar Hölder-α domains
dc.creator.none.fl_str_mv Duran, Ricardo Guillermo
Lopez Garcia, Fernando Alfonso
author Duran, Ricardo Guillermo
author_facet Duran, Ricardo Guillermo
Lopez Garcia, Fernando Alfonso
author_role author
author2 Lopez Garcia, Fernando Alfonso
author2_role author
dc.subject.none.fl_str_mv DIVERGENCE OPERATOR
HÓLDER-α DOMAINS
STOKES EQUATIONS
topic DIVERGENCE OPERATOR
HÓLDER-α DOMAINS
STOKES EQUATIONS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv If Ω ⊂ n is a bounded domain, the existence of solutions u∈ H10(Ω)n of div u = f for f ∈ L 2(Ω) with vanishing mean value, is a basic result in the analysis of the Stokes equations. In particular, it allows to show the existence of a solution (u,p)∈ H10(Ω)n× L2(Ω ), where u is the velocity and p the pressure. It is known that the above-mentioned result holds when Ω is a Lipschitz domain and that it is not valid for arbitrary Hölder-α domains. In this paper we prove that if Ω is a planar simply connected Hölder-α domain, there exist solutions of div u = f in appropriate weighted Sobolev spaces, where the weights are powers of the distance to the boundary. Moreover, we show that the powers of the distance in the results obtained are optimal. For some particular domains with an external cusp, we apply our results to show the well-posedness of the Stokes equations in appropriate weighted Sobolev spaces obtaining as a consequence the existence of a solution (u,p)∈ H10(Ω) n× Lr(Ω) for some r < 2 depending on the power of the cusp. © 2010 World Scientific Publishing Company.
Fil: Duran, Ricardo Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Lopez Garcia, Fernando Alfonso. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
description If Ω ⊂ n is a bounded domain, the existence of solutions u∈ H10(Ω)n of div u = f for f ∈ L 2(Ω) with vanishing mean value, is a basic result in the analysis of the Stokes equations. In particular, it allows to show the existence of a solution (u,p)∈ H10(Ω)n× L2(Ω ), where u is the velocity and p the pressure. It is known that the above-mentioned result holds when Ω is a Lipschitz domain and that it is not valid for arbitrary Hölder-α domains. In this paper we prove that if Ω is a planar simply connected Hölder-α domain, there exist solutions of div u = f in appropriate weighted Sobolev spaces, where the weights are powers of the distance to the boundary. Moreover, we show that the powers of the distance in the results obtained are optimal. For some particular domains with an external cusp, we apply our results to show the well-posedness of the Stokes equations in appropriate weighted Sobolev spaces obtaining as a consequence the existence of a solution (u,p)∈ H10(Ω) n× Lr(Ω) for some r < 2 depending on the power of the cusp. © 2010 World Scientific Publishing Company.
publishDate 2010
dc.date.none.fl_str_mv 2010-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/68478
Duran, Ricardo Guillermo; Lopez Garcia, Fernando Alfonso; Solutions of the divergence and analysis of the stokes equations in planar Hölder-α domains; World Scientific; Mathematical Models And Methods In Applied Sciences; 20; 1; 1-2010; 95-120
0218-2025
CONICET Digital
CONICET
url http://hdl.handle.net/11336/68478
identifier_str_mv Duran, Ricardo Guillermo; Lopez Garcia, Fernando Alfonso; Solutions of the divergence and analysis of the stokes equations in planar Hölder-α domains; World Scientific; Mathematical Models And Methods In Applied Sciences; 20; 1; 1-2010; 95-120
0218-2025
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1142/S0218202510004167
info:eu-repo/semantics/altIdentifier/url/https://www.worldscientific.com/doi/abs/10.1142/S0218202510004167
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv World Scientific
publisher.none.fl_str_mv World Scientific
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613174457794560
score 13.070432