Solutions of the divergence and analysis of the stokes equations in planar Hölder-α domains
- Autores
- Duran, Ricardo Guillermo; Lopez Garcia, Fernando Alfonso
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- If Ω ⊂ n is a bounded domain, the existence of solutions u∈ H10(Ω)n of div u = f for f ∈ L 2(Ω) with vanishing mean value, is a basic result in the analysis of the Stokes equations. In particular, it allows to show the existence of a solution (u,p)∈ H10(Ω)n× L2(Ω ), where u is the velocity and p the pressure. It is known that the above-mentioned result holds when Ω is a Lipschitz domain and that it is not valid for arbitrary Hölder-α domains. In this paper we prove that if Ω is a planar simply connected Hölder-α domain, there exist solutions of div u = f in appropriate weighted Sobolev spaces, where the weights are powers of the distance to the boundary. Moreover, we show that the powers of the distance in the results obtained are optimal. For some particular domains with an external cusp, we apply our results to show the well-posedness of the Stokes equations in appropriate weighted Sobolev spaces obtaining as a consequence the existence of a solution (u,p)∈ H10(Ω) n× Lr(Ω) for some r < 2 depending on the power of the cusp. © 2010 World Scientific Publishing Company.
Fil: Duran, Ricardo Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Lopez Garcia, Fernando Alfonso. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina - Materia
-
DIVERGENCE OPERATOR
HÓLDER-α DOMAINS
STOKES EQUATIONS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/68478
Ver los metadatos del registro completo
id |
CONICETDig_41270fe009e7b374ac57e96bcc89e5b3 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/68478 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Solutions of the divergence and analysis of the stokes equations in planar Hölder-α domainsDuran, Ricardo GuillermoLopez Garcia, Fernando AlfonsoDIVERGENCE OPERATORHÓLDER-α DOMAINSSTOKES EQUATIONShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1If Ω ⊂ n is a bounded domain, the existence of solutions u∈ H10(Ω)n of div u = f for f ∈ L 2(Ω) with vanishing mean value, is a basic result in the analysis of the Stokes equations. In particular, it allows to show the existence of a solution (u,p)∈ H10(Ω)n× L2(Ω ), where u is the velocity and p the pressure. It is known that the above-mentioned result holds when Ω is a Lipschitz domain and that it is not valid for arbitrary Hölder-α domains. In this paper we prove that if Ω is a planar simply connected Hölder-α domain, there exist solutions of div u = f in appropriate weighted Sobolev spaces, where the weights are powers of the distance to the boundary. Moreover, we show that the powers of the distance in the results obtained are optimal. For some particular domains with an external cusp, we apply our results to show the well-posedness of the Stokes equations in appropriate weighted Sobolev spaces obtaining as a consequence the existence of a solution (u,p)∈ H10(Ω) n× Lr(Ω) for some r < 2 depending on the power of the cusp. © 2010 World Scientific Publishing Company.Fil: Duran, Ricardo Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Lopez Garcia, Fernando Alfonso. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaWorld Scientific2010-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/68478Duran, Ricardo Guillermo; Lopez Garcia, Fernando Alfonso; Solutions of the divergence and analysis of the stokes equations in planar Hölder-α domains; World Scientific; Mathematical Models And Methods In Applied Sciences; 20; 1; 1-2010; 95-1200218-2025CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1142/S0218202510004167info:eu-repo/semantics/altIdentifier/url/https://www.worldscientific.com/doi/abs/10.1142/S0218202510004167info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:37:17Zoai:ri.conicet.gov.ar:11336/68478instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:37:18.116CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Solutions of the divergence and analysis of the stokes equations in planar Hölder-α domains |
title |
Solutions of the divergence and analysis of the stokes equations in planar Hölder-α domains |
spellingShingle |
Solutions of the divergence and analysis of the stokes equations in planar Hölder-α domains Duran, Ricardo Guillermo DIVERGENCE OPERATOR HÓLDER-α DOMAINS STOKES EQUATIONS |
title_short |
Solutions of the divergence and analysis of the stokes equations in planar Hölder-α domains |
title_full |
Solutions of the divergence and analysis of the stokes equations in planar Hölder-α domains |
title_fullStr |
Solutions of the divergence and analysis of the stokes equations in planar Hölder-α domains |
title_full_unstemmed |
Solutions of the divergence and analysis of the stokes equations in planar Hölder-α domains |
title_sort |
Solutions of the divergence and analysis of the stokes equations in planar Hölder-α domains |
dc.creator.none.fl_str_mv |
Duran, Ricardo Guillermo Lopez Garcia, Fernando Alfonso |
author |
Duran, Ricardo Guillermo |
author_facet |
Duran, Ricardo Guillermo Lopez Garcia, Fernando Alfonso |
author_role |
author |
author2 |
Lopez Garcia, Fernando Alfonso |
author2_role |
author |
dc.subject.none.fl_str_mv |
DIVERGENCE OPERATOR HÓLDER-α DOMAINS STOKES EQUATIONS |
topic |
DIVERGENCE OPERATOR HÓLDER-α DOMAINS STOKES EQUATIONS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
If Ω ⊂ n is a bounded domain, the existence of solutions u∈ H10(Ω)n of div u = f for f ∈ L 2(Ω) with vanishing mean value, is a basic result in the analysis of the Stokes equations. In particular, it allows to show the existence of a solution (u,p)∈ H10(Ω)n× L2(Ω ), where u is the velocity and p the pressure. It is known that the above-mentioned result holds when Ω is a Lipschitz domain and that it is not valid for arbitrary Hölder-α domains. In this paper we prove that if Ω is a planar simply connected Hölder-α domain, there exist solutions of div u = f in appropriate weighted Sobolev spaces, where the weights are powers of the distance to the boundary. Moreover, we show that the powers of the distance in the results obtained are optimal. For some particular domains with an external cusp, we apply our results to show the well-posedness of the Stokes equations in appropriate weighted Sobolev spaces obtaining as a consequence the existence of a solution (u,p)∈ H10(Ω) n× Lr(Ω) for some r < 2 depending on the power of the cusp. © 2010 World Scientific Publishing Company. Fil: Duran, Ricardo Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Lopez Garcia, Fernando Alfonso. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina |
description |
If Ω ⊂ n is a bounded domain, the existence of solutions u∈ H10(Ω)n of div u = f for f ∈ L 2(Ω) with vanishing mean value, is a basic result in the analysis of the Stokes equations. In particular, it allows to show the existence of a solution (u,p)∈ H10(Ω)n× L2(Ω ), where u is the velocity and p the pressure. It is known that the above-mentioned result holds when Ω is a Lipschitz domain and that it is not valid for arbitrary Hölder-α domains. In this paper we prove that if Ω is a planar simply connected Hölder-α domain, there exist solutions of div u = f in appropriate weighted Sobolev spaces, where the weights are powers of the distance to the boundary. Moreover, we show that the powers of the distance in the results obtained are optimal. For some particular domains with an external cusp, we apply our results to show the well-posedness of the Stokes equations in appropriate weighted Sobolev spaces obtaining as a consequence the existence of a solution (u,p)∈ H10(Ω) n× Lr(Ω) for some r < 2 depending on the power of the cusp. © 2010 World Scientific Publishing Company. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/68478 Duran, Ricardo Guillermo; Lopez Garcia, Fernando Alfonso; Solutions of the divergence and analysis of the stokes equations in planar Hölder-α domains; World Scientific; Mathematical Models And Methods In Applied Sciences; 20; 1; 1-2010; 95-120 0218-2025 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/68478 |
identifier_str_mv |
Duran, Ricardo Guillermo; Lopez Garcia, Fernando Alfonso; Solutions of the divergence and analysis of the stokes equations in planar Hölder-α domains; World Scientific; Mathematical Models And Methods In Applied Sciences; 20; 1; 1-2010; 95-120 0218-2025 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1142/S0218202510004167 info:eu-repo/semantics/altIdentifier/url/https://www.worldscientific.com/doi/abs/10.1142/S0218202510004167 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
World Scientific |
publisher.none.fl_str_mv |
World Scientific |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613174457794560 |
score |
13.070432 |