An elementary proof of the continuity from L20(Ω) to H10(Ω)n of Bogovskii’s right inverse of the divergence
- Autores
- Duran, Ricardo Guillermo
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The existence of right inverses of the divergence as an operator from H1 0 (Ω)n to L 2 0(Ω) is a problem that has been widely studied because of its importance in the analysis of the classic equations of fluid dynamics. When Ω is a bounded domain which is star-shaped with respect to a ball B, a right inverse given by an integral operator was introduced by Bogovskii, who also proved its continuity using the Calder´on-Zygmund theory of singular integrals. In this paper we give an alternative elementary proof of the continuity using the Fourier transform. As a consequence, we obtain estimates for the constant in the continuity in terms of the ratio between the diameter of Ω and that of B. Moreover, using the relation between the existence of right inverses of the divergence with the Korn and improved Poincar´e inequalities, we obtain estimates for the constants in these two inequalities. We also show that one can proceed in the opposite way, that is, the existence of a continuous right inverse of the divergence, as well as estimates for the constant in that continuity, can be obtained from the improved Poincar´e inequality. We give an interesting example of this situation in the case of convex domains.
Fil: Duran, Ricardo Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina - Materia
-
DIVERGENCE OPERATOR
SINGULAR INTEGRAL
STOKES EQUATIONS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/127513
Ver los metadatos del registro completo
| id |
CONICETDig_d11c51867f3781b090876aba57d62cf5 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/127513 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
An elementary proof of the continuity from L20(Ω) to H10(Ω)n of Bogovskii’s right inverse of the divergenceDuran, Ricardo GuillermoDIVERGENCE OPERATORSINGULAR INTEGRALSTOKES EQUATIONShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The existence of right inverses of the divergence as an operator from H1 0 (Ω)n to L 2 0(Ω) is a problem that has been widely studied because of its importance in the analysis of the classic equations of fluid dynamics. When Ω is a bounded domain which is star-shaped with respect to a ball B, a right inverse given by an integral operator was introduced by Bogovskii, who also proved its continuity using the Calder´on-Zygmund theory of singular integrals. In this paper we give an alternative elementary proof of the continuity using the Fourier transform. As a consequence, we obtain estimates for the constant in the continuity in terms of the ratio between the diameter of Ω and that of B. Moreover, using the relation between the existence of right inverses of the divergence with the Korn and improved Poincar´e inequalities, we obtain estimates for the constants in these two inequalities. We also show that one can proceed in the opposite way, that is, the existence of a continuous right inverse of the divergence, as well as estimates for the constant in that continuity, can be obtained from the improved Poincar´e inequality. We give an interesting example of this situation in the case of convex domains.Fil: Duran, Ricardo Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaUnión Matemática Argentina2012-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/127513Duran, Ricardo Guillermo; An elementary proof of the continuity from L20(Ω) to H10(Ω)n of Bogovskii’s right inverse of the divergence; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 53; 2; 3-2012; 59-780041-69321669-9637CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://inmabb.criba.edu.ar/revuma/revuma.php?p=toc/vol53info:eu-repo/semantics/altIdentifier/url/https://inmabb.criba.edu.ar/revuma/pdf/v53n2/v53n2a06.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:56:42Zoai:ri.conicet.gov.ar:11336/127513instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:56:43.228CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
An elementary proof of the continuity from L20(Ω) to H10(Ω)n of Bogovskii’s right inverse of the divergence |
| title |
An elementary proof of the continuity from L20(Ω) to H10(Ω)n of Bogovskii’s right inverse of the divergence |
| spellingShingle |
An elementary proof of the continuity from L20(Ω) to H10(Ω)n of Bogovskii’s right inverse of the divergence Duran, Ricardo Guillermo DIVERGENCE OPERATOR SINGULAR INTEGRAL STOKES EQUATIONS |
| title_short |
An elementary proof of the continuity from L20(Ω) to H10(Ω)n of Bogovskii’s right inverse of the divergence |
| title_full |
An elementary proof of the continuity from L20(Ω) to H10(Ω)n of Bogovskii’s right inverse of the divergence |
| title_fullStr |
An elementary proof of the continuity from L20(Ω) to H10(Ω)n of Bogovskii’s right inverse of the divergence |
| title_full_unstemmed |
An elementary proof of the continuity from L20(Ω) to H10(Ω)n of Bogovskii’s right inverse of the divergence |
| title_sort |
An elementary proof of the continuity from L20(Ω) to H10(Ω)n of Bogovskii’s right inverse of the divergence |
| dc.creator.none.fl_str_mv |
Duran, Ricardo Guillermo |
| author |
Duran, Ricardo Guillermo |
| author_facet |
Duran, Ricardo Guillermo |
| author_role |
author |
| dc.subject.none.fl_str_mv |
DIVERGENCE OPERATOR SINGULAR INTEGRAL STOKES EQUATIONS |
| topic |
DIVERGENCE OPERATOR SINGULAR INTEGRAL STOKES EQUATIONS |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
The existence of right inverses of the divergence as an operator from H1 0 (Ω)n to L 2 0(Ω) is a problem that has been widely studied because of its importance in the analysis of the classic equations of fluid dynamics. When Ω is a bounded domain which is star-shaped with respect to a ball B, a right inverse given by an integral operator was introduced by Bogovskii, who also proved its continuity using the Calder´on-Zygmund theory of singular integrals. In this paper we give an alternative elementary proof of the continuity using the Fourier transform. As a consequence, we obtain estimates for the constant in the continuity in terms of the ratio between the diameter of Ω and that of B. Moreover, using the relation between the existence of right inverses of the divergence with the Korn and improved Poincar´e inequalities, we obtain estimates for the constants in these two inequalities. We also show that one can proceed in the opposite way, that is, the existence of a continuous right inverse of the divergence, as well as estimates for the constant in that continuity, can be obtained from the improved Poincar´e inequality. We give an interesting example of this situation in the case of convex domains. Fil: Duran, Ricardo Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina |
| description |
The existence of right inverses of the divergence as an operator from H1 0 (Ω)n to L 2 0(Ω) is a problem that has been widely studied because of its importance in the analysis of the classic equations of fluid dynamics. When Ω is a bounded domain which is star-shaped with respect to a ball B, a right inverse given by an integral operator was introduced by Bogovskii, who also proved its continuity using the Calder´on-Zygmund theory of singular integrals. In this paper we give an alternative elementary proof of the continuity using the Fourier transform. As a consequence, we obtain estimates for the constant in the continuity in terms of the ratio between the diameter of Ω and that of B. Moreover, using the relation between the existence of right inverses of the divergence with the Korn and improved Poincar´e inequalities, we obtain estimates for the constants in these two inequalities. We also show that one can proceed in the opposite way, that is, the existence of a continuous right inverse of the divergence, as well as estimates for the constant in that continuity, can be obtained from the improved Poincar´e inequality. We give an interesting example of this situation in the case of convex domains. |
| publishDate |
2012 |
| dc.date.none.fl_str_mv |
2012-03 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/127513 Duran, Ricardo Guillermo; An elementary proof of the continuity from L20(Ω) to H10(Ω)n of Bogovskii’s right inverse of the divergence; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 53; 2; 3-2012; 59-78 0041-6932 1669-9637 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/127513 |
| identifier_str_mv |
Duran, Ricardo Guillermo; An elementary proof of the continuity from L20(Ω) to H10(Ω)n of Bogovskii’s right inverse of the divergence; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 53; 2; 3-2012; 59-78 0041-6932 1669-9637 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://inmabb.criba.edu.ar/revuma/revuma.php?p=toc/vol53 info:eu-repo/semantics/altIdentifier/url/https://inmabb.criba.edu.ar/revuma/pdf/v53n2/v53n2a06.pdf |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Unión Matemática Argentina |
| publisher.none.fl_str_mv |
Unión Matemática Argentina |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846782275066265600 |
| score |
12.982451 |