An elementary proof of the continuity from L20(Ω) to H10(Ω)n of Bogovskii’s right inverse of the divergence

Autores
Duran, Ricardo Guillermo
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The existence of right inverses of the divergence as an operator from H1 0 (Ω)n to L 2 0(Ω) is a problem that has been widely studied because of its importance in the analysis of the classic equations of fluid dynamics. When Ω is a bounded domain which is star-shaped with respect to a ball B, a right inverse given by an integral operator was introduced by Bogovskii, who also proved its continuity using the Calder´on-Zygmund theory of singular integrals. In this paper we give an alternative elementary proof of the continuity using the Fourier transform. As a consequence, we obtain estimates for the constant in the continuity in terms of the ratio between the diameter of Ω and that of B. Moreover, using the relation between the existence of right inverses of the divergence with the Korn and improved Poincar´e inequalities, we obtain estimates for the constants in these two inequalities. We also show that one can proceed in the opposite way, that is, the existence of a continuous right inverse of the divergence, as well as estimates for the constant in that continuity, can be obtained from the improved Poincar´e inequality. We give an interesting example of this situation in the case of convex domains.
Fil: Duran, Ricardo Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Materia
DIVERGENCE OPERATOR
SINGULAR INTEGRAL
STOKES EQUATIONS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/127513

id CONICETDig_d11c51867f3781b090876aba57d62cf5
oai_identifier_str oai:ri.conicet.gov.ar:11336/127513
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling An elementary proof of the continuity from L20(Ω) to H10(Ω)n of Bogovskii’s right inverse of the divergenceDuran, Ricardo GuillermoDIVERGENCE OPERATORSINGULAR INTEGRALSTOKES EQUATIONShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The existence of right inverses of the divergence as an operator from H1 0 (Ω)n to L 2 0(Ω) is a problem that has been widely studied because of its importance in the analysis of the classic equations of fluid dynamics. When Ω is a bounded domain which is star-shaped with respect to a ball B, a right inverse given by an integral operator was introduced by Bogovskii, who also proved its continuity using the Calder´on-Zygmund theory of singular integrals. In this paper we give an alternative elementary proof of the continuity using the Fourier transform. As a consequence, we obtain estimates for the constant in the continuity in terms of the ratio between the diameter of Ω and that of B. Moreover, using the relation between the existence of right inverses of the divergence with the Korn and improved Poincar´e inequalities, we obtain estimates for the constants in these two inequalities. We also show that one can proceed in the opposite way, that is, the existence of a continuous right inverse of the divergence, as well as estimates for the constant in that continuity, can be obtained from the improved Poincar´e inequality. We give an interesting example of this situation in the case of convex domains.Fil: Duran, Ricardo Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaUnión Matemática Argentina2012-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/127513Duran, Ricardo Guillermo; An elementary proof of the continuity from L20(Ω) to H10(Ω)n of Bogovskii’s right inverse of the divergence; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 53; 2; 3-2012; 59-780041-69321669-9637CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://inmabb.criba.edu.ar/revuma/revuma.php?p=toc/vol53info:eu-repo/semantics/altIdentifier/url/https://inmabb.criba.edu.ar/revuma/pdf/v53n2/v53n2a06.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:56:42Zoai:ri.conicet.gov.ar:11336/127513instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:56:43.228CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv An elementary proof of the continuity from L20(Ω) to H10(Ω)n of Bogovskii’s right inverse of the divergence
title An elementary proof of the continuity from L20(Ω) to H10(Ω)n of Bogovskii’s right inverse of the divergence
spellingShingle An elementary proof of the continuity from L20(Ω) to H10(Ω)n of Bogovskii’s right inverse of the divergence
Duran, Ricardo Guillermo
DIVERGENCE OPERATOR
SINGULAR INTEGRAL
STOKES EQUATIONS
title_short An elementary proof of the continuity from L20(Ω) to H10(Ω)n of Bogovskii’s right inverse of the divergence
title_full An elementary proof of the continuity from L20(Ω) to H10(Ω)n of Bogovskii’s right inverse of the divergence
title_fullStr An elementary proof of the continuity from L20(Ω) to H10(Ω)n of Bogovskii’s right inverse of the divergence
title_full_unstemmed An elementary proof of the continuity from L20(Ω) to H10(Ω)n of Bogovskii’s right inverse of the divergence
title_sort An elementary proof of the continuity from L20(Ω) to H10(Ω)n of Bogovskii’s right inverse of the divergence
dc.creator.none.fl_str_mv Duran, Ricardo Guillermo
author Duran, Ricardo Guillermo
author_facet Duran, Ricardo Guillermo
author_role author
dc.subject.none.fl_str_mv DIVERGENCE OPERATOR
SINGULAR INTEGRAL
STOKES EQUATIONS
topic DIVERGENCE OPERATOR
SINGULAR INTEGRAL
STOKES EQUATIONS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The existence of right inverses of the divergence as an operator from H1 0 (Ω)n to L 2 0(Ω) is a problem that has been widely studied because of its importance in the analysis of the classic equations of fluid dynamics. When Ω is a bounded domain which is star-shaped with respect to a ball B, a right inverse given by an integral operator was introduced by Bogovskii, who also proved its continuity using the Calder´on-Zygmund theory of singular integrals. In this paper we give an alternative elementary proof of the continuity using the Fourier transform. As a consequence, we obtain estimates for the constant in the continuity in terms of the ratio between the diameter of Ω and that of B. Moreover, using the relation between the existence of right inverses of the divergence with the Korn and improved Poincar´e inequalities, we obtain estimates for the constants in these two inequalities. We also show that one can proceed in the opposite way, that is, the existence of a continuous right inverse of the divergence, as well as estimates for the constant in that continuity, can be obtained from the improved Poincar´e inequality. We give an interesting example of this situation in the case of convex domains.
Fil: Duran, Ricardo Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
description The existence of right inverses of the divergence as an operator from H1 0 (Ω)n to L 2 0(Ω) is a problem that has been widely studied because of its importance in the analysis of the classic equations of fluid dynamics. When Ω is a bounded domain which is star-shaped with respect to a ball B, a right inverse given by an integral operator was introduced by Bogovskii, who also proved its continuity using the Calder´on-Zygmund theory of singular integrals. In this paper we give an alternative elementary proof of the continuity using the Fourier transform. As a consequence, we obtain estimates for the constant in the continuity in terms of the ratio between the diameter of Ω and that of B. Moreover, using the relation between the existence of right inverses of the divergence with the Korn and improved Poincar´e inequalities, we obtain estimates for the constants in these two inequalities. We also show that one can proceed in the opposite way, that is, the existence of a continuous right inverse of the divergence, as well as estimates for the constant in that continuity, can be obtained from the improved Poincar´e inequality. We give an interesting example of this situation in the case of convex domains.
publishDate 2012
dc.date.none.fl_str_mv 2012-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/127513
Duran, Ricardo Guillermo; An elementary proof of the continuity from L20(Ω) to H10(Ω)n of Bogovskii’s right inverse of the divergence; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 53; 2; 3-2012; 59-78
0041-6932
1669-9637
CONICET Digital
CONICET
url http://hdl.handle.net/11336/127513
identifier_str_mv Duran, Ricardo Guillermo; An elementary proof of the continuity from L20(Ω) to H10(Ω)n of Bogovskii’s right inverse of the divergence; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 53; 2; 3-2012; 59-78
0041-6932
1669-9637
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://inmabb.criba.edu.ar/revuma/revuma.php?p=toc/vol53
info:eu-repo/semantics/altIdentifier/url/https://inmabb.criba.edu.ar/revuma/pdf/v53n2/v53n2a06.pdf
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Unión Matemática Argentina
publisher.none.fl_str_mv Unión Matemática Argentina
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846782275066265600
score 12.982451