Sharp eigenvalue estimates for rank one perturbations of nonnegative operators in Krein spaces
- Autores
- Behrndt, Jussi; Leben, Leslie; Martínez Pería, Francisco Dardo; Möws, Roland; Trunk, Carsten
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Let A and B be selfadjoint operators in a Krein space and assume that the resolvent difference of A and B is of rank one. In the case that A is nonnegative and I is an open interval such that σ(A)∩I consists of isolated eigenvalues we prove sharp estimates on the number and multiplicities of eigenvalues of B in I. The general result is illustrated with eigenvalue estimates for singular indefinite Sturm–Liouville problems.
Facultad de Ciencias Exactas - Materia
-
Matemática
Krein space
Nonnegative operator
Finite rank perturbation
Eigenvalues - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/102366
Ver los metadatos del registro completo
id |
SEDICI_747602c857f0e73dacd7402b15f1c2fb |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/102366 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Sharp eigenvalue estimates for rank one perturbations of nonnegative operators in Krein spacesBehrndt, JussiLeben, LeslieMartínez Pería, Francisco DardoMöws, RolandTrunk, CarstenMatemáticaKrein spaceNonnegative operatorFinite rank perturbationEigenvaluesLet A and B be selfadjoint operators in a Krein space and assume that the resolvent difference of A and B is of rank one. In the case that A is nonnegative and I is an open interval such that σ(A)∩I consists of isolated eigenvalues we prove sharp estimates on the number and multiplicities of eigenvalues of B in I. The general result is illustrated with eigenvalue estimates for singular indefinite Sturm–Liouville problems.Facultad de Ciencias Exactas2016-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf864-895http://sedici.unlp.edu.ar/handle/10915/102366enginfo:eu-repo/semantics/altIdentifier/url/https://ri.conicet.gov.ar/11336/19011info:eu-repo/semantics/altIdentifier/issn/0022-247Xinfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2016.03.012info:eu-repo/semantics/altIdentifier/hdl/11336/19011info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:20:55Zoai:sedici.unlp.edu.ar:10915/102366Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:20:55.694SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Sharp eigenvalue estimates for rank one perturbations of nonnegative operators in Krein spaces |
title |
Sharp eigenvalue estimates for rank one perturbations of nonnegative operators in Krein spaces |
spellingShingle |
Sharp eigenvalue estimates for rank one perturbations of nonnegative operators in Krein spaces Behrndt, Jussi Matemática Krein space Nonnegative operator Finite rank perturbation Eigenvalues |
title_short |
Sharp eigenvalue estimates for rank one perturbations of nonnegative operators in Krein spaces |
title_full |
Sharp eigenvalue estimates for rank one perturbations of nonnegative operators in Krein spaces |
title_fullStr |
Sharp eigenvalue estimates for rank one perturbations of nonnegative operators in Krein spaces |
title_full_unstemmed |
Sharp eigenvalue estimates for rank one perturbations of nonnegative operators in Krein spaces |
title_sort |
Sharp eigenvalue estimates for rank one perturbations of nonnegative operators in Krein spaces |
dc.creator.none.fl_str_mv |
Behrndt, Jussi Leben, Leslie Martínez Pería, Francisco Dardo Möws, Roland Trunk, Carsten |
author |
Behrndt, Jussi |
author_facet |
Behrndt, Jussi Leben, Leslie Martínez Pería, Francisco Dardo Möws, Roland Trunk, Carsten |
author_role |
author |
author2 |
Leben, Leslie Martínez Pería, Francisco Dardo Möws, Roland Trunk, Carsten |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Matemática Krein space Nonnegative operator Finite rank perturbation Eigenvalues |
topic |
Matemática Krein space Nonnegative operator Finite rank perturbation Eigenvalues |
dc.description.none.fl_txt_mv |
Let A and B be selfadjoint operators in a Krein space and assume that the resolvent difference of A and B is of rank one. In the case that A is nonnegative and I is an open interval such that σ(A)∩I consists of isolated eigenvalues we prove sharp estimates on the number and multiplicities of eigenvalues of B in I. The general result is illustrated with eigenvalue estimates for singular indefinite Sturm–Liouville problems. Facultad de Ciencias Exactas |
description |
Let A and B be selfadjoint operators in a Krein space and assume that the resolvent difference of A and B is of rank one. In the case that A is nonnegative and I is an open interval such that σ(A)∩I consists of isolated eigenvalues we prove sharp estimates on the number and multiplicities of eigenvalues of B in I. The general result is illustrated with eigenvalue estimates for singular indefinite Sturm–Liouville problems. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/102366 |
url |
http://sedici.unlp.edu.ar/handle/10915/102366 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://ri.conicet.gov.ar/11336/19011 info:eu-repo/semantics/altIdentifier/issn/0022-247X info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2016.03.012 info:eu-repo/semantics/altIdentifier/hdl/11336/19011 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 864-895 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616084108345344 |
score |
13.070432 |