The effect of finite rank perturbations on Jordan chains of linear operators

Autores
Behrndt, Jussi; Martinez Peria, Francisco Dardo; Leben,Leslie; Trunk, Carsten
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
A general result on the structure and dimension of the root subspaces of a linear operator under finite rank perturbations is proved: The increase of dimension from the n-th power of the kernel of the perturbed operator to the (n + 1)-th power differs from the increase of dimension of the corresponding powers of the kernels of the unperturbed operator by at most the rank of the perturbation. This bound is sharp.
Fil: Behrndt, Jussi. Technische Universität Graz. Institut für Numerische Mathematik.; Alemania
Fil: Martinez Peria, Francisco Dardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemáticas; Argentina
Fil: Leben,Leslie. Technische Universität Graz. Institut für Numerische Mathematik; Alemania
Fil: Trunk, Carsten. Technische Universität Graz. Institut für Numerische Mathematik; Alemania
Materia
Finite Rank Perturbation
Jordan Chain
Root Subspace
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/2671

id CONICETDig_b1795ae190053fe2444d5dd0d276982b
oai_identifier_str oai:ri.conicet.gov.ar:11336/2671
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling The effect of finite rank perturbations on Jordan chains of linear operatorsBehrndt, JussiMartinez Peria, Francisco DardoLeben,LeslieTrunk, CarstenFinite Rank PerturbationJordan ChainRoot Subspacehttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1A general result on the structure and dimension of the root subspaces of a linear operator under finite rank perturbations is proved: The increase of dimension from the n-th power of the kernel of the perturbed operator to the (n + 1)-th power differs from the increase of dimension of the corresponding powers of the kernels of the unperturbed operator by at most the rank of the perturbation. This bound is sharp.Fil: Behrndt, Jussi. Technische Universität Graz. Institut für Numerische Mathematik.; AlemaniaFil: Martinez Peria, Francisco Dardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemáticas; ArgentinaFil: Leben,Leslie. Technische Universität Graz. Institut für Numerische Mathematik; AlemaniaFil: Trunk, Carsten. Technische Universität Graz. Institut für Numerische Mathematik; AlemaniaElsevier Science Inc2015-08-15info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/2671Behrndt, Jussi; Martinez Peria, Francisco Dardo; Leben,Leslie; Trunk, Carsten; The effect of finite rank perturbations on Jordan chains of linear operators; Elsevier Science Inc; Linear Algebra And Its Applications; 479; 15-8-2015; 118-1300024-3795enginfo:eu-repo/semantics/altIdentifier/url/http://goo.gl/pVONS6info:eu-repo/semantics/altIdentifier/url/http://arxiv.org/abs/1403.7758info:eu-repo/semantics/altIdentifier/doi/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:38:46Zoai:ri.conicet.gov.ar:11336/2671instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:38:46.41CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv The effect of finite rank perturbations on Jordan chains of linear operators
title The effect of finite rank perturbations on Jordan chains of linear operators
spellingShingle The effect of finite rank perturbations on Jordan chains of linear operators
Behrndt, Jussi
Finite Rank Perturbation
Jordan Chain
Root Subspace
title_short The effect of finite rank perturbations on Jordan chains of linear operators
title_full The effect of finite rank perturbations on Jordan chains of linear operators
title_fullStr The effect of finite rank perturbations on Jordan chains of linear operators
title_full_unstemmed The effect of finite rank perturbations on Jordan chains of linear operators
title_sort The effect of finite rank perturbations on Jordan chains of linear operators
dc.creator.none.fl_str_mv Behrndt, Jussi
Martinez Peria, Francisco Dardo
Leben,Leslie
Trunk, Carsten
author Behrndt, Jussi
author_facet Behrndt, Jussi
Martinez Peria, Francisco Dardo
Leben,Leslie
Trunk, Carsten
author_role author
author2 Martinez Peria, Francisco Dardo
Leben,Leslie
Trunk, Carsten
author2_role author
author
author
dc.subject.none.fl_str_mv Finite Rank Perturbation
Jordan Chain
Root Subspace
topic Finite Rank Perturbation
Jordan Chain
Root Subspace
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv A general result on the structure and dimension of the root subspaces of a linear operator under finite rank perturbations is proved: The increase of dimension from the n-th power of the kernel of the perturbed operator to the (n + 1)-th power differs from the increase of dimension of the corresponding powers of the kernels of the unperturbed operator by at most the rank of the perturbation. This bound is sharp.
Fil: Behrndt, Jussi. Technische Universität Graz. Institut für Numerische Mathematik.; Alemania
Fil: Martinez Peria, Francisco Dardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemáticas; Argentina
Fil: Leben,Leslie. Technische Universität Graz. Institut für Numerische Mathematik; Alemania
Fil: Trunk, Carsten. Technische Universität Graz. Institut für Numerische Mathematik; Alemania
description A general result on the structure and dimension of the root subspaces of a linear operator under finite rank perturbations is proved: The increase of dimension from the n-th power of the kernel of the perturbed operator to the (n + 1)-th power differs from the increase of dimension of the corresponding powers of the kernels of the unperturbed operator by at most the rank of the perturbation. This bound is sharp.
publishDate 2015
dc.date.none.fl_str_mv 2015-08-15
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/2671
Behrndt, Jussi; Martinez Peria, Francisco Dardo; Leben,Leslie; Trunk, Carsten; The effect of finite rank perturbations on Jordan chains of linear operators; Elsevier Science Inc; Linear Algebra And Its Applications; 479; 15-8-2015; 118-130
0024-3795
url http://hdl.handle.net/11336/2671
identifier_str_mv Behrndt, Jussi; Martinez Peria, Francisco Dardo; Leben,Leslie; Trunk, Carsten; The effect of finite rank perturbations on Jordan chains of linear operators; Elsevier Science Inc; Linear Algebra And Its Applications; 479; 15-8-2015; 118-130
0024-3795
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://goo.gl/pVONS6
info:eu-repo/semantics/altIdentifier/url/http://arxiv.org/abs/1403.7758
info:eu-repo/semantics/altIdentifier/doi/
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science Inc
publisher.none.fl_str_mv Elsevier Science Inc
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613226306732032
score 13.070432