The effect of finite rank perturbations on Jordan chains of linear operators
- Autores
- Behrndt, Jussi; Martinez Peria, Francisco Dardo; Leben,Leslie; Trunk, Carsten
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A general result on the structure and dimension of the root subspaces of a linear operator under finite rank perturbations is proved: The increase of dimension from the n-th power of the kernel of the perturbed operator to the (n + 1)-th power differs from the increase of dimension of the corresponding powers of the kernels of the unperturbed operator by at most the rank of the perturbation. This bound is sharp.
Fil: Behrndt, Jussi. Technische Universität Graz. Institut für Numerische Mathematik.; Alemania
Fil: Martinez Peria, Francisco Dardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemáticas; Argentina
Fil: Leben,Leslie. Technische Universität Graz. Institut für Numerische Mathematik; Alemania
Fil: Trunk, Carsten. Technische Universität Graz. Institut für Numerische Mathematik; Alemania - Materia
-
Finite Rank Perturbation
Jordan Chain
Root Subspace - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/2671
Ver los metadatos del registro completo
id |
CONICETDig_b1795ae190053fe2444d5dd0d276982b |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/2671 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
The effect of finite rank perturbations on Jordan chains of linear operatorsBehrndt, JussiMartinez Peria, Francisco DardoLeben,LeslieTrunk, CarstenFinite Rank PerturbationJordan ChainRoot Subspacehttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1A general result on the structure and dimension of the root subspaces of a linear operator under finite rank perturbations is proved: The increase of dimension from the n-th power of the kernel of the perturbed operator to the (n + 1)-th power differs from the increase of dimension of the corresponding powers of the kernels of the unperturbed operator by at most the rank of the perturbation. This bound is sharp.Fil: Behrndt, Jussi. Technische Universität Graz. Institut für Numerische Mathematik.; AlemaniaFil: Martinez Peria, Francisco Dardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemáticas; ArgentinaFil: Leben,Leslie. Technische Universität Graz. Institut für Numerische Mathematik; AlemaniaFil: Trunk, Carsten. Technische Universität Graz. Institut für Numerische Mathematik; AlemaniaElsevier Science Inc2015-08-15info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/2671Behrndt, Jussi; Martinez Peria, Francisco Dardo; Leben,Leslie; Trunk, Carsten; The effect of finite rank perturbations on Jordan chains of linear operators; Elsevier Science Inc; Linear Algebra And Its Applications; 479; 15-8-2015; 118-1300024-3795enginfo:eu-repo/semantics/altIdentifier/url/http://goo.gl/pVONS6info:eu-repo/semantics/altIdentifier/url/http://arxiv.org/abs/1403.7758info:eu-repo/semantics/altIdentifier/doi/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:38:46Zoai:ri.conicet.gov.ar:11336/2671instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:38:46.41CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
The effect of finite rank perturbations on Jordan chains of linear operators |
title |
The effect of finite rank perturbations on Jordan chains of linear operators |
spellingShingle |
The effect of finite rank perturbations on Jordan chains of linear operators Behrndt, Jussi Finite Rank Perturbation Jordan Chain Root Subspace |
title_short |
The effect of finite rank perturbations on Jordan chains of linear operators |
title_full |
The effect of finite rank perturbations on Jordan chains of linear operators |
title_fullStr |
The effect of finite rank perturbations on Jordan chains of linear operators |
title_full_unstemmed |
The effect of finite rank perturbations on Jordan chains of linear operators |
title_sort |
The effect of finite rank perturbations on Jordan chains of linear operators |
dc.creator.none.fl_str_mv |
Behrndt, Jussi Martinez Peria, Francisco Dardo Leben,Leslie Trunk, Carsten |
author |
Behrndt, Jussi |
author_facet |
Behrndt, Jussi Martinez Peria, Francisco Dardo Leben,Leslie Trunk, Carsten |
author_role |
author |
author2 |
Martinez Peria, Francisco Dardo Leben,Leslie Trunk, Carsten |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Finite Rank Perturbation Jordan Chain Root Subspace |
topic |
Finite Rank Perturbation Jordan Chain Root Subspace |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
A general result on the structure and dimension of the root subspaces of a linear operator under finite rank perturbations is proved: The increase of dimension from the n-th power of the kernel of the perturbed operator to the (n + 1)-th power differs from the increase of dimension of the corresponding powers of the kernels of the unperturbed operator by at most the rank of the perturbation. This bound is sharp. Fil: Behrndt, Jussi. Technische Universität Graz. Institut für Numerische Mathematik.; Alemania Fil: Martinez Peria, Francisco Dardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemáticas; Argentina Fil: Leben,Leslie. Technische Universität Graz. Institut für Numerische Mathematik; Alemania Fil: Trunk, Carsten. Technische Universität Graz. Institut für Numerische Mathematik; Alemania |
description |
A general result on the structure and dimension of the root subspaces of a linear operator under finite rank perturbations is proved: The increase of dimension from the n-th power of the kernel of the perturbed operator to the (n + 1)-th power differs from the increase of dimension of the corresponding powers of the kernels of the unperturbed operator by at most the rank of the perturbation. This bound is sharp. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-08-15 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/2671 Behrndt, Jussi; Martinez Peria, Francisco Dardo; Leben,Leslie; Trunk, Carsten; The effect of finite rank perturbations on Jordan chains of linear operators; Elsevier Science Inc; Linear Algebra And Its Applications; 479; 15-8-2015; 118-130 0024-3795 |
url |
http://hdl.handle.net/11336/2671 |
identifier_str_mv |
Behrndt, Jussi; Martinez Peria, Francisco Dardo; Leben,Leslie; Trunk, Carsten; The effect of finite rank perturbations on Jordan chains of linear operators; Elsevier Science Inc; Linear Algebra And Its Applications; 479; 15-8-2015; 118-130 0024-3795 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://goo.gl/pVONS6 info:eu-repo/semantics/altIdentifier/url/http://arxiv.org/abs/1403.7758 info:eu-repo/semantics/altIdentifier/doi/ |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science Inc |
publisher.none.fl_str_mv |
Elsevier Science Inc |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613226306732032 |
score |
13.070432 |