The effect of finite rank perturbations on Jordan chains of linear operators

Autores
Behrndt, Jussi; Leben, Leslie; Martínez Pería, Francisco Dardo; Trunk, Carsten
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
A general result on the structure and dimension of the root subspaces of a linear operator under finite rank perturbations is proved: The increase of dimension from the kernel of the n-th power to the kernel of the (n+1)-th power of the perturbed operator differs from the increase of dimension of the kernels of the corresponding powers of the unperturbed operator by at most the rank of the perturbation. This bound is sharp.
Facultad de Ciencias Exactas
Materia
Ciencias Exactas
Matemática
Finite rank perturbation
Jordan chain
Root subspace
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/86002

id SEDICI_b9e4aa9f59fe55eada4c6908443cf516
oai_identifier_str oai:sedici.unlp.edu.ar:10915/86002
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling The effect of finite rank perturbations on Jordan chains of linear operatorsBehrndt, JussiLeben, LeslieMartínez Pería, Francisco DardoTrunk, CarstenCiencias ExactasMatemáticaFinite rank perturbationJordan chainRoot subspaceA general result on the structure and dimension of the root subspaces of a linear operator under finite rank perturbations is proved: The increase of dimension from the kernel of the <i>n</i>-th power to the kernel of the (<i>n</i>+1)-th power of the perturbed operator differs from the increase of dimension of the kernels of the corresponding powers of the unperturbed operator by at most the rank of the perturbation. This bound is sharp.Facultad de Ciencias Exactas2015info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf118-130http://sedici.unlp.edu.ar/handle/10915/86002enginfo:eu-repo/semantics/altIdentifier/issn/0024-3795info:eu-repo/semantics/altIdentifier/doi/10.1016/j.laa.2015.04.007info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:16:55Zoai:sedici.unlp.edu.ar:10915/86002Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:16:55.417SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv The effect of finite rank perturbations on Jordan chains of linear operators
title The effect of finite rank perturbations on Jordan chains of linear operators
spellingShingle The effect of finite rank perturbations on Jordan chains of linear operators
Behrndt, Jussi
Ciencias Exactas
Matemática
Finite rank perturbation
Jordan chain
Root subspace
title_short The effect of finite rank perturbations on Jordan chains of linear operators
title_full The effect of finite rank perturbations on Jordan chains of linear operators
title_fullStr The effect of finite rank perturbations on Jordan chains of linear operators
title_full_unstemmed The effect of finite rank perturbations on Jordan chains of linear operators
title_sort The effect of finite rank perturbations on Jordan chains of linear operators
dc.creator.none.fl_str_mv Behrndt, Jussi
Leben, Leslie
Martínez Pería, Francisco Dardo
Trunk, Carsten
author Behrndt, Jussi
author_facet Behrndt, Jussi
Leben, Leslie
Martínez Pería, Francisco Dardo
Trunk, Carsten
author_role author
author2 Leben, Leslie
Martínez Pería, Francisco Dardo
Trunk, Carsten
author2_role author
author
author
dc.subject.none.fl_str_mv Ciencias Exactas
Matemática
Finite rank perturbation
Jordan chain
Root subspace
topic Ciencias Exactas
Matemática
Finite rank perturbation
Jordan chain
Root subspace
dc.description.none.fl_txt_mv A general result on the structure and dimension of the root subspaces of a linear operator under finite rank perturbations is proved: The increase of dimension from the kernel of the <i>n</i>-th power to the kernel of the (<i>n</i>+1)-th power of the perturbed operator differs from the increase of dimension of the kernels of the corresponding powers of the unperturbed operator by at most the rank of the perturbation. This bound is sharp.
Facultad de Ciencias Exactas
description A general result on the structure and dimension of the root subspaces of a linear operator under finite rank perturbations is proved: The increase of dimension from the kernel of the <i>n</i>-th power to the kernel of the (<i>n</i>+1)-th power of the perturbed operator differs from the increase of dimension of the kernels of the corresponding powers of the unperturbed operator by at most the rank of the perturbation. This bound is sharp.
publishDate 2015
dc.date.none.fl_str_mv 2015
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/86002
url http://sedici.unlp.edu.ar/handle/10915/86002
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/0024-3795
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.laa.2015.04.007
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
118-130
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616042139090944
score 13.070432