Morphology and dynamic scaling analysis of cell colonies with linear growth fronts

Autores
Huergo, María Ana Cristina; Pasquale, Miguel Ángel; Bolzán, Agustín Eduardo; Arvia, Alejandro Jorge; González, Pedro Horacio
Año de publicación
2010
Idioma
español castellano
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The growth of linear cell colony fronts is investigated from the morphology of cell monolayer colonies, the cell size and shape distribution, the front displacement velocity, and the dynamic scaling analysis of front roughness fluctuations. At the early growth stages, colony patterns consist of rather ordered compact domains of small cells, whereas at advanced stages, an uneven distribution of cells sets in, and some large cells and cells exhibiting large filopodia are produced. Colony front profiles exhibit overhangs and behave as fractals with the dimension DF=1.2560.05. The colony fronts shift at 0.2260.02 mm min−1 average constant linear velocity and their roughness swd increases with time std. Dynamic scaling analysis of experimental and overhangcorrected growth profile data shows that w versus system width l log-log plots collapse to a single curve when l exceeds a certain threshold value lo, a width corresponding to the average diameter of few cells. Then, the influence of overhangs on the roughness dynamics becomes negligible, and a growth exponent b =0.3360.02 is derived. From the structure factor analysis of overhang-corrected profiles, a global roughness exponent as=0.5060.05 is obtained. For l.200 mm, this set of exponents fulfills the Family-Vicsek relationship. It is consistent with the predictions of the continuous Kardar-Parisi-Zhang model.
Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas
Facultad de Ciencias Médicas
Materia
Física
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/167506

id SEDICI_709dd3a5559766eebc0105201dd5bf52
oai_identifier_str oai:sedici.unlp.edu.ar:10915/167506
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Morphology and dynamic scaling analysis of cell colonies with linear growth frontsHuergo, María Ana CristinaPasquale, Miguel ÁngelBolzán, Agustín EduardoArvia, Alejandro JorgeGonzález, Pedro HoracioFísicaThe growth of linear cell colony fronts is investigated from the morphology of cell monolayer colonies, the cell size and shape distribution, the front displacement velocity, and the dynamic scaling analysis of front roughness fluctuations. At the early growth stages, colony patterns consist of rather ordered compact domains of small cells, whereas at advanced stages, an uneven distribution of cells sets in, and some large cells and cells exhibiting large filopodia are produced. Colony front profiles exhibit overhangs and behave as fractals with the dimension DF=1.2560.05. The colony fronts shift at 0.2260.02 mm min−1 average constant linear velocity and their roughness swd increases with time std. Dynamic scaling analysis of experimental and overhangcorrected growth profile data shows that w versus system width l log-log plots collapse to a single curve when l exceeds a certain threshold value lo, a width corresponding to the average diameter of few cells. Then, the influence of overhangs on the roughness dynamics becomes negligible, and a growth exponent b =0.3360.02 is derived. From the structure factor analysis of overhang-corrected profiles, a global roughness exponent as=0.5060.05 is obtained. For l.200 mm, this set of exponents fulfills the Family-Vicsek relationship. It is consistent with the predictions of the continuous Kardar-Parisi-Zhang model.Instituto de Investigaciones Fisicoquímicas Teóricas y AplicadasFacultad de Ciencias Médicas2010info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/167506spainfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.82.031903info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:44:36Zoai:sedici.unlp.edu.ar:10915/167506Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:44:36.742SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Morphology and dynamic scaling analysis of cell colonies with linear growth fronts
title Morphology and dynamic scaling analysis of cell colonies with linear growth fronts
spellingShingle Morphology and dynamic scaling analysis of cell colonies with linear growth fronts
Huergo, María Ana Cristina
Física
title_short Morphology and dynamic scaling analysis of cell colonies with linear growth fronts
title_full Morphology and dynamic scaling analysis of cell colonies with linear growth fronts
title_fullStr Morphology and dynamic scaling analysis of cell colonies with linear growth fronts
title_full_unstemmed Morphology and dynamic scaling analysis of cell colonies with linear growth fronts
title_sort Morphology and dynamic scaling analysis of cell colonies with linear growth fronts
dc.creator.none.fl_str_mv Huergo, María Ana Cristina
Pasquale, Miguel Ángel
Bolzán, Agustín Eduardo
Arvia, Alejandro Jorge
González, Pedro Horacio
author Huergo, María Ana Cristina
author_facet Huergo, María Ana Cristina
Pasquale, Miguel Ángel
Bolzán, Agustín Eduardo
Arvia, Alejandro Jorge
González, Pedro Horacio
author_role author
author2 Pasquale, Miguel Ángel
Bolzán, Agustín Eduardo
Arvia, Alejandro Jorge
González, Pedro Horacio
author2_role author
author
author
author
dc.subject.none.fl_str_mv Física
topic Física
dc.description.none.fl_txt_mv The growth of linear cell colony fronts is investigated from the morphology of cell monolayer colonies, the cell size and shape distribution, the front displacement velocity, and the dynamic scaling analysis of front roughness fluctuations. At the early growth stages, colony patterns consist of rather ordered compact domains of small cells, whereas at advanced stages, an uneven distribution of cells sets in, and some large cells and cells exhibiting large filopodia are produced. Colony front profiles exhibit overhangs and behave as fractals with the dimension DF=1.2560.05. The colony fronts shift at 0.2260.02 mm min−1 average constant linear velocity and their roughness swd increases with time std. Dynamic scaling analysis of experimental and overhangcorrected growth profile data shows that w versus system width l log-log plots collapse to a single curve when l exceeds a certain threshold value lo, a width corresponding to the average diameter of few cells. Then, the influence of overhangs on the roughness dynamics becomes negligible, and a growth exponent b =0.3360.02 is derived. From the structure factor analysis of overhang-corrected profiles, a global roughness exponent as=0.5060.05 is obtained. For l.200 mm, this set of exponents fulfills the Family-Vicsek relationship. It is consistent with the predictions of the continuous Kardar-Parisi-Zhang model.
Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas
Facultad de Ciencias Médicas
description The growth of linear cell colony fronts is investigated from the morphology of cell monolayer colonies, the cell size and shape distribution, the front displacement velocity, and the dynamic scaling analysis of front roughness fluctuations. At the early growth stages, colony patterns consist of rather ordered compact domains of small cells, whereas at advanced stages, an uneven distribution of cells sets in, and some large cells and cells exhibiting large filopodia are produced. Colony front profiles exhibit overhangs and behave as fractals with the dimension DF=1.2560.05. The colony fronts shift at 0.2260.02 mm min−1 average constant linear velocity and their roughness swd increases with time std. Dynamic scaling analysis of experimental and overhangcorrected growth profile data shows that w versus system width l log-log plots collapse to a single curve when l exceeds a certain threshold value lo, a width corresponding to the average diameter of few cells. Then, the influence of overhangs on the roughness dynamics becomes negligible, and a growth exponent b =0.3360.02 is derived. From the structure factor analysis of overhang-corrected profiles, a global roughness exponent as=0.5060.05 is obtained. For l.200 mm, this set of exponents fulfills the Family-Vicsek relationship. It is consistent with the predictions of the continuous Kardar-Parisi-Zhang model.
publishDate 2010
dc.date.none.fl_str_mv 2010
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/167506
url http://sedici.unlp.edu.ar/handle/10915/167506
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.82.031903
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616313195986944
score 13.070432