Behavioral control through evolutionary neurocontrollers for autonomous mobile robot navigation
- Autores
- Fernandez Leon, Jose Alberto; Acosta, Gerardo Gabriel; Mayosky, Miguel Angel
- Año de publicación
- 2009
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This paper deals with the study of scaling up behaviors in evolutive robotics (ER). Complex behaviors were obtained from simple ones. Each behavior is supported by an artificial neural network (ANN)-based controller or neurocontroller. Hence, a method for the generation of a hierarchy of neurocontrollers, resorting to the paradigm of Layered Evolution (LE), is developed and verified experimentally through computer simulations and tests in a Khepera® micro-robot. Several behavioral modules are initially evolved using specialized neurocontrollers based on different ANN paradigms. The results show that simple behaviors coordination through LE is a feasible strategy that gives rise to emergent complex behaviors. These complex behaviors can then solve real-world problems efficiently. From a pure evolutionary perspective, however, the methodology presented is too much dependent on user’s prior knowledge about the problem to solve and also that evolution take place in a rigid, prescribed framework. Mobile robot’s navigation in an unknown environment is used as a test bed for the proposed scaling strategies.
Fil: Fernandez Leon, Jose Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina. University of Sussex; Reino Unido
Fil: Acosta, Gerardo Gabriel. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ingeniería Olavarría. Departamento de Electromecánica. Grupo INTELYMEC; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina
Fil: Mayosky, Miguel Angel. Universidad Nacional de La Plata. Facultad de Ingeniería. Departamento de Electrotecnia. Laboratorio de Electrónica Industrial, Control e Instrumentación; Argentina - Materia
-
autonomous navigation
robotics
neural networks
bio-inspiration - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/240005
Ver los metadatos del registro completo
id |
CONICETDig_9e7d29fb2cdb2f82e79dacd471910da4 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/240005 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Behavioral control through evolutionary neurocontrollers for autonomous mobile robot navigationFernandez Leon, Jose AlbertoAcosta, Gerardo GabrielMayosky, Miguel Angelautonomous navigationroboticsneural networksbio-inspirationhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1This paper deals with the study of scaling up behaviors in evolutive robotics (ER). Complex behaviors were obtained from simple ones. Each behavior is supported by an artificial neural network (ANN)-based controller or neurocontroller. Hence, a method for the generation of a hierarchy of neurocontrollers, resorting to the paradigm of Layered Evolution (LE), is developed and verified experimentally through computer simulations and tests in a Khepera® micro-robot. Several behavioral modules are initially evolved using specialized neurocontrollers based on different ANN paradigms. The results show that simple behaviors coordination through LE is a feasible strategy that gives rise to emergent complex behaviors. These complex behaviors can then solve real-world problems efficiently. From a pure evolutionary perspective, however, the methodology presented is too much dependent on user’s prior knowledge about the problem to solve and also that evolution take place in a rigid, prescribed framework. Mobile robot’s navigation in an unknown environment is used as a test bed for the proposed scaling strategies.Fil: Fernandez Leon, Jose Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina. University of Sussex; Reino UnidoFil: Acosta, Gerardo Gabriel. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ingeniería Olavarría. Departamento de Electromecánica. Grupo INTELYMEC; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; ArgentinaFil: Mayosky, Miguel Angel. Universidad Nacional de La Plata. Facultad de Ingeniería. Departamento de Electrotecnia. Laboratorio de Electrónica Industrial, Control e Instrumentación; ArgentinaElsevier Science2009-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/240005Fernandez Leon, Jose Alberto; Acosta, Gerardo Gabriel; Mayosky, Miguel Angel; Behavioral control through evolutionary neurocontrollers for autonomous mobile robot navigation; Elsevier Science; Robotics And Autonomous Systems; 57; 4; 4-2009; 411-4190921-8890CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.robot.2008.06.012info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:47:22Zoai:ri.conicet.gov.ar:11336/240005instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:47:23.038CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Behavioral control through evolutionary neurocontrollers for autonomous mobile robot navigation |
title |
Behavioral control through evolutionary neurocontrollers for autonomous mobile robot navigation |
spellingShingle |
Behavioral control through evolutionary neurocontrollers for autonomous mobile robot navigation Fernandez Leon, Jose Alberto autonomous navigation robotics neural networks bio-inspiration |
title_short |
Behavioral control through evolutionary neurocontrollers for autonomous mobile robot navigation |
title_full |
Behavioral control through evolutionary neurocontrollers for autonomous mobile robot navigation |
title_fullStr |
Behavioral control through evolutionary neurocontrollers for autonomous mobile robot navigation |
title_full_unstemmed |
Behavioral control through evolutionary neurocontrollers for autonomous mobile robot navigation |
title_sort |
Behavioral control through evolutionary neurocontrollers for autonomous mobile robot navigation |
dc.creator.none.fl_str_mv |
Fernandez Leon, Jose Alberto Acosta, Gerardo Gabriel Mayosky, Miguel Angel |
author |
Fernandez Leon, Jose Alberto |
author_facet |
Fernandez Leon, Jose Alberto Acosta, Gerardo Gabriel Mayosky, Miguel Angel |
author_role |
author |
author2 |
Acosta, Gerardo Gabriel Mayosky, Miguel Angel |
author2_role |
author author |
dc.subject.none.fl_str_mv |
autonomous navigation robotics neural networks bio-inspiration |
topic |
autonomous navigation robotics neural networks bio-inspiration |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
This paper deals with the study of scaling up behaviors in evolutive robotics (ER). Complex behaviors were obtained from simple ones. Each behavior is supported by an artificial neural network (ANN)-based controller or neurocontroller. Hence, a method for the generation of a hierarchy of neurocontrollers, resorting to the paradigm of Layered Evolution (LE), is developed and verified experimentally through computer simulations and tests in a Khepera® micro-robot. Several behavioral modules are initially evolved using specialized neurocontrollers based on different ANN paradigms. The results show that simple behaviors coordination through LE is a feasible strategy that gives rise to emergent complex behaviors. These complex behaviors can then solve real-world problems efficiently. From a pure evolutionary perspective, however, the methodology presented is too much dependent on user’s prior knowledge about the problem to solve and also that evolution take place in a rigid, prescribed framework. Mobile robot’s navigation in an unknown environment is used as a test bed for the proposed scaling strategies. Fil: Fernandez Leon, Jose Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina. University of Sussex; Reino Unido Fil: Acosta, Gerardo Gabriel. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ingeniería Olavarría. Departamento de Electromecánica. Grupo INTELYMEC; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina Fil: Mayosky, Miguel Angel. Universidad Nacional de La Plata. Facultad de Ingeniería. Departamento de Electrotecnia. Laboratorio de Electrónica Industrial, Control e Instrumentación; Argentina |
description |
This paper deals with the study of scaling up behaviors in evolutive robotics (ER). Complex behaviors were obtained from simple ones. Each behavior is supported by an artificial neural network (ANN)-based controller or neurocontroller. Hence, a method for the generation of a hierarchy of neurocontrollers, resorting to the paradigm of Layered Evolution (LE), is developed and verified experimentally through computer simulations and tests in a Khepera® micro-robot. Several behavioral modules are initially evolved using specialized neurocontrollers based on different ANN paradigms. The results show that simple behaviors coordination through LE is a feasible strategy that gives rise to emergent complex behaviors. These complex behaviors can then solve real-world problems efficiently. From a pure evolutionary perspective, however, the methodology presented is too much dependent on user’s prior knowledge about the problem to solve and also that evolution take place in a rigid, prescribed framework. Mobile robot’s navigation in an unknown environment is used as a test bed for the proposed scaling strategies. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/240005 Fernandez Leon, Jose Alberto; Acosta, Gerardo Gabriel; Mayosky, Miguel Angel; Behavioral control through evolutionary neurocontrollers for autonomous mobile robot navigation; Elsevier Science; Robotics And Autonomous Systems; 57; 4; 4-2009; 411-419 0921-8890 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/240005 |
identifier_str_mv |
Fernandez Leon, Jose Alberto; Acosta, Gerardo Gabriel; Mayosky, Miguel Angel; Behavioral control through evolutionary neurocontrollers for autonomous mobile robot navigation; Elsevier Science; Robotics And Autonomous Systems; 57; 4; 4-2009; 411-419 0921-8890 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.robot.2008.06.012 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082989684948992 |
score |
13.22299 |