Biclustering in data mining using a memetic multi-objective evolutionary algorithm
- Autores
- Gallo, Cristian Andrés; Maguitman, Ana Gabriela; Carballido, Jessica Andrea; Ponzoni, Ignacio
- Año de publicación
- 2008
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- In this paper, a new memetic strategy that integrates a multi-objective evolutionary algorithm (the SPEA2) with a local search technique for data mining is presented. The algorithm explores a Term Frequency-Inverse Document Frequency (TF-IDF) data matrix in order to find biclusters that fulfill several objectives. The case of study was a dataset corresponding to the Reuters-21578 corpus. Our algorithm performed satisfactorily, finding biclusters that have large size and coherent values, yielding to undeniably promising outcomes. Nonetheless, more experiments with data from other corpus are necessary, thus leading to more concluding results
Workshop de Agentes y Sistemas Inteligentes (WASI)
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
biclustering
evolutionary algorithms
Data mining
Algorithms - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/21682
Ver los metadatos del registro completo
id |
SEDICI_6ce57b70a678a86eaf946e00899afc18 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/21682 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Biclustering in data mining using a memetic multi-objective evolutionary algorithmGallo, Cristian AndrésMaguitman, Ana GabrielaCarballido, Jessica AndreaPonzoni, IgnacioCiencias Informáticasbiclusteringevolutionary algorithmsData miningAlgorithmsIn this paper, a new memetic strategy that integrates a multi-objective evolutionary algorithm (the SPEA2) with a local search technique for data mining is presented. The algorithm explores a Term Frequency-Inverse Document Frequency (TF-IDF) data matrix in order to find biclusters that fulfill several objectives. The case of study was a dataset corresponding to the Reuters-21578 corpus. Our algorithm performed satisfactorily, finding biclusters that have large size and coherent values, yielding to undeniably promising outcomes. Nonetheless, more experiments with data from other corpus are necessary, thus leading to more concluding resultsWorkshop de Agentes y Sistemas Inteligentes (WASI)Red de Universidades con Carreras en Informática (RedUNCI)2008-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/21682enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T10:47:19Zoai:sedici.unlp.edu.ar:10915/21682Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 10:47:20.269SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Biclustering in data mining using a memetic multi-objective evolutionary algorithm |
title |
Biclustering in data mining using a memetic multi-objective evolutionary algorithm |
spellingShingle |
Biclustering in data mining using a memetic multi-objective evolutionary algorithm Gallo, Cristian Andrés Ciencias Informáticas biclustering evolutionary algorithms Data mining Algorithms |
title_short |
Biclustering in data mining using a memetic multi-objective evolutionary algorithm |
title_full |
Biclustering in data mining using a memetic multi-objective evolutionary algorithm |
title_fullStr |
Biclustering in data mining using a memetic multi-objective evolutionary algorithm |
title_full_unstemmed |
Biclustering in data mining using a memetic multi-objective evolutionary algorithm |
title_sort |
Biclustering in data mining using a memetic multi-objective evolutionary algorithm |
dc.creator.none.fl_str_mv |
Gallo, Cristian Andrés Maguitman, Ana Gabriela Carballido, Jessica Andrea Ponzoni, Ignacio |
author |
Gallo, Cristian Andrés |
author_facet |
Gallo, Cristian Andrés Maguitman, Ana Gabriela Carballido, Jessica Andrea Ponzoni, Ignacio |
author_role |
author |
author2 |
Maguitman, Ana Gabriela Carballido, Jessica Andrea Ponzoni, Ignacio |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas biclustering evolutionary algorithms Data mining Algorithms |
topic |
Ciencias Informáticas biclustering evolutionary algorithms Data mining Algorithms |
dc.description.none.fl_txt_mv |
In this paper, a new memetic strategy that integrates a multi-objective evolutionary algorithm (the SPEA2) with a local search technique for data mining is presented. The algorithm explores a Term Frequency-Inverse Document Frequency (TF-IDF) data matrix in order to find biclusters that fulfill several objectives. The case of study was a dataset corresponding to the Reuters-21578 corpus. Our algorithm performed satisfactorily, finding biclusters that have large size and coherent values, yielding to undeniably promising outcomes. Nonetheless, more experiments with data from other corpus are necessary, thus leading to more concluding results Workshop de Agentes y Sistemas Inteligentes (WASI) Red de Universidades con Carreras en Informática (RedUNCI) |
description |
In this paper, a new memetic strategy that integrates a multi-objective evolutionary algorithm (the SPEA2) with a local search technique for data mining is presented. The algorithm explores a Term Frequency-Inverse Document Frequency (TF-IDF) data matrix in order to find biclusters that fulfill several objectives. The case of study was a dataset corresponding to the Reuters-21578 corpus. Our algorithm performed satisfactorily, finding biclusters that have large size and coherent values, yielding to undeniably promising outcomes. Nonetheless, more experiments with data from other corpus are necessary, thus leading to more concluding results |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/21682 |
url |
http://sedici.unlp.edu.ar/handle/10915/21682 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1846063899272544256 |
score |
13.22299 |