A Decision Support Tool for Urban Freight Transport Planning Based on a Multi-Objective Evolutionary Algorithm

Autores
Miguel, Fabio Maximilian; Frutos, Mariano; Tohmé, Fernando Abel; Méndez Babey, Máximo
Año de publicación
2019
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We present an optimization procedure based on a hybrid version of an evolutionary multiobjective decision-making algorithm for its application in urban freight transportation planning problems. This tool is intended to solve the planning problems of a merchandise distribution firm that dispatches small volume fractional loads of fresh foods on daily schedules. The firm owns a network of distribution centers supplying a large number of small businesses in Buenos Aires and its surroundings. The recombination operator of the evolutionary algorithm used here has been designed specifically for this problem. It is intended to embody a strategy that takes into account constraints like temporary closeness, closeness time window and connectivity in order to improve its performance in the clustering phase. The representation allows incorporating specific information about the actual instances of the problem and uses adaptive control of the parameters in the calibration stage. The performance of the proposed optimizer was tested against the results obtained by two evolutionary algorithms, NSGA II and SPEA 2, widely used in similar problems. We use hypervolume as a measure of convergence and dispersion of Pareto fronts. The statistical analysis of the results obtained with the three algorithms uses the Wilcoxon rank sum test, which yields evidence that our procedure provides good results.
Fil: Miguel, Fabio Maximilian. Universidad Nacional de Rio Negro. Sede Alto Valle. Sub Sede Villa Regina; Argentina
Fil: Frutos, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Económicas y Sociales del Sur. Universidad Nacional del Sur. Departamento de Economía. Instituto de Investigaciones Económicas y Sociales del Sur; Argentina
Fil: Tohmé, Fernando Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
Fil: Méndez Babey, Máximo. Universidad de Las Palmas de Gran Canaria. Instituto Universitario de Sistemas Inteligentes Siani; Argentina
Materia
DECISION MAKING
EVOLUTIONARY COMPUTATION
GENETIC ALGORITHMS
DECISION SUPPORT SYSTEMS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/118476

id CONICETDig_f3340c8e220a76d5d867f57293720691
oai_identifier_str oai:ri.conicet.gov.ar:11336/118476
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A Decision Support Tool for Urban Freight Transport Planning Based on a Multi-Objective Evolutionary AlgorithmMiguel, Fabio MaximilianFrutos, MarianoTohmé, Fernando AbelMéndez Babey, MáximoDECISION MAKINGEVOLUTIONARY COMPUTATIONGENETIC ALGORITHMSDECISION SUPPORT SYSTEMShttps://purl.org/becyt/ford/2.11https://purl.org/becyt/ford/2We present an optimization procedure based on a hybrid version of an evolutionary multiobjective decision-making algorithm for its application in urban freight transportation planning problems. This tool is intended to solve the planning problems of a merchandise distribution firm that dispatches small volume fractional loads of fresh foods on daily schedules. The firm owns a network of distribution centers supplying a large number of small businesses in Buenos Aires and its surroundings. The recombination operator of the evolutionary algorithm used here has been designed specifically for this problem. It is intended to embody a strategy that takes into account constraints like temporary closeness, closeness time window and connectivity in order to improve its performance in the clustering phase. The representation allows incorporating specific information about the actual instances of the problem and uses adaptive control of the parameters in the calibration stage. The performance of the proposed optimizer was tested against the results obtained by two evolutionary algorithms, NSGA II and SPEA 2, widely used in similar problems. We use hypervolume as a measure of convergence and dispersion of Pareto fronts. The statistical analysis of the results obtained with the three algorithms uses the Wilcoxon rank sum test, which yields evidence that our procedure provides good results.Fil: Miguel, Fabio Maximilian. Universidad Nacional de Rio Negro. Sede Alto Valle. Sub Sede Villa Regina; ArgentinaFil: Frutos, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Económicas y Sociales del Sur. Universidad Nacional del Sur. Departamento de Economía. Instituto de Investigaciones Económicas y Sociales del Sur; ArgentinaFil: Tohmé, Fernando Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; ArgentinaFil: Méndez Babey, Máximo. Universidad de Las Palmas de Gran Canaria. Instituto Universitario de Sistemas Inteligentes Siani; ArgentinaInstitute of Electrical and Electronics Engineers2019-11-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/118476Miguel, Fabio Maximilian; Frutos, Mariano; Tohmé, Fernando Abel; Méndez Babey, Máximo; A Decision Support Tool for Urban Freight Transport Planning Based on a Multi-Objective Evolutionary Algorithm; Institute of Electrical and Electronics Engineers; IEEE Access; 7; 1; 7-11-2019; 156707-1567212169-3536CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/8884163/info:eu-repo/semantics/altIdentifier/doi/10.1109/ACCESS.2019.2949948info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:21:04Zoai:ri.conicet.gov.ar:11336/118476instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:21:04.865CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A Decision Support Tool for Urban Freight Transport Planning Based on a Multi-Objective Evolutionary Algorithm
title A Decision Support Tool for Urban Freight Transport Planning Based on a Multi-Objective Evolutionary Algorithm
spellingShingle A Decision Support Tool for Urban Freight Transport Planning Based on a Multi-Objective Evolutionary Algorithm
Miguel, Fabio Maximilian
DECISION MAKING
EVOLUTIONARY COMPUTATION
GENETIC ALGORITHMS
DECISION SUPPORT SYSTEMS
title_short A Decision Support Tool for Urban Freight Transport Planning Based on a Multi-Objective Evolutionary Algorithm
title_full A Decision Support Tool for Urban Freight Transport Planning Based on a Multi-Objective Evolutionary Algorithm
title_fullStr A Decision Support Tool for Urban Freight Transport Planning Based on a Multi-Objective Evolutionary Algorithm
title_full_unstemmed A Decision Support Tool for Urban Freight Transport Planning Based on a Multi-Objective Evolutionary Algorithm
title_sort A Decision Support Tool for Urban Freight Transport Planning Based on a Multi-Objective Evolutionary Algorithm
dc.creator.none.fl_str_mv Miguel, Fabio Maximilian
Frutos, Mariano
Tohmé, Fernando Abel
Méndez Babey, Máximo
author Miguel, Fabio Maximilian
author_facet Miguel, Fabio Maximilian
Frutos, Mariano
Tohmé, Fernando Abel
Méndez Babey, Máximo
author_role author
author2 Frutos, Mariano
Tohmé, Fernando Abel
Méndez Babey, Máximo
author2_role author
author
author
dc.subject.none.fl_str_mv DECISION MAKING
EVOLUTIONARY COMPUTATION
GENETIC ALGORITHMS
DECISION SUPPORT SYSTEMS
topic DECISION MAKING
EVOLUTIONARY COMPUTATION
GENETIC ALGORITHMS
DECISION SUPPORT SYSTEMS
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.11
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv We present an optimization procedure based on a hybrid version of an evolutionary multiobjective decision-making algorithm for its application in urban freight transportation planning problems. This tool is intended to solve the planning problems of a merchandise distribution firm that dispatches small volume fractional loads of fresh foods on daily schedules. The firm owns a network of distribution centers supplying a large number of small businesses in Buenos Aires and its surroundings. The recombination operator of the evolutionary algorithm used here has been designed specifically for this problem. It is intended to embody a strategy that takes into account constraints like temporary closeness, closeness time window and connectivity in order to improve its performance in the clustering phase. The representation allows incorporating specific information about the actual instances of the problem and uses adaptive control of the parameters in the calibration stage. The performance of the proposed optimizer was tested against the results obtained by two evolutionary algorithms, NSGA II and SPEA 2, widely used in similar problems. We use hypervolume as a measure of convergence and dispersion of Pareto fronts. The statistical analysis of the results obtained with the three algorithms uses the Wilcoxon rank sum test, which yields evidence that our procedure provides good results.
Fil: Miguel, Fabio Maximilian. Universidad Nacional de Rio Negro. Sede Alto Valle. Sub Sede Villa Regina; Argentina
Fil: Frutos, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Económicas y Sociales del Sur. Universidad Nacional del Sur. Departamento de Economía. Instituto de Investigaciones Económicas y Sociales del Sur; Argentina
Fil: Tohmé, Fernando Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
Fil: Méndez Babey, Máximo. Universidad de Las Palmas de Gran Canaria. Instituto Universitario de Sistemas Inteligentes Siani; Argentina
description We present an optimization procedure based on a hybrid version of an evolutionary multiobjective decision-making algorithm for its application in urban freight transportation planning problems. This tool is intended to solve the planning problems of a merchandise distribution firm that dispatches small volume fractional loads of fresh foods on daily schedules. The firm owns a network of distribution centers supplying a large number of small businesses in Buenos Aires and its surroundings. The recombination operator of the evolutionary algorithm used here has been designed specifically for this problem. It is intended to embody a strategy that takes into account constraints like temporary closeness, closeness time window and connectivity in order to improve its performance in the clustering phase. The representation allows incorporating specific information about the actual instances of the problem and uses adaptive control of the parameters in the calibration stage. The performance of the proposed optimizer was tested against the results obtained by two evolutionary algorithms, NSGA II and SPEA 2, widely used in similar problems. We use hypervolume as a measure of convergence and dispersion of Pareto fronts. The statistical analysis of the results obtained with the three algorithms uses the Wilcoxon rank sum test, which yields evidence that our procedure provides good results.
publishDate 2019
dc.date.none.fl_str_mv 2019-11-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/118476
Miguel, Fabio Maximilian; Frutos, Mariano; Tohmé, Fernando Abel; Méndez Babey, Máximo; A Decision Support Tool for Urban Freight Transport Planning Based on a Multi-Objective Evolutionary Algorithm; Institute of Electrical and Electronics Engineers; IEEE Access; 7; 1; 7-11-2019; 156707-156721
2169-3536
CONICET Digital
CONICET
url http://hdl.handle.net/11336/118476
identifier_str_mv Miguel, Fabio Maximilian; Frutos, Mariano; Tohmé, Fernando Abel; Méndez Babey, Máximo; A Decision Support Tool for Urban Freight Transport Planning Based on a Multi-Objective Evolutionary Algorithm; Institute of Electrical and Electronics Engineers; IEEE Access; 7; 1; 7-11-2019; 156707-156721
2169-3536
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/8884163/
info:eu-repo/semantics/altIdentifier/doi/10.1109/ACCESS.2019.2949948
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers
publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614197178007552
score 13.069144