A Decision Support Tool for Urban Freight Transport Planning Based on a Multi-Objective Evolutionary Algorithm
- Autores
- Miguel, Fabio Maximilian; Frutos, Mariano; Tohmé, Fernando Abel; Méndez Babey, Máximo
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We present an optimization procedure based on a hybrid version of an evolutionary multiobjective decision-making algorithm for its application in urban freight transportation planning problems. This tool is intended to solve the planning problems of a merchandise distribution firm that dispatches small volume fractional loads of fresh foods on daily schedules. The firm owns a network of distribution centers supplying a large number of small businesses in Buenos Aires and its surroundings. The recombination operator of the evolutionary algorithm used here has been designed specifically for this problem. It is intended to embody a strategy that takes into account constraints like temporary closeness, closeness time window and connectivity in order to improve its performance in the clustering phase. The representation allows incorporating specific information about the actual instances of the problem and uses adaptive control of the parameters in the calibration stage. The performance of the proposed optimizer was tested against the results obtained by two evolutionary algorithms, NSGA II and SPEA 2, widely used in similar problems. We use hypervolume as a measure of convergence and dispersion of Pareto fronts. The statistical analysis of the results obtained with the three algorithms uses the Wilcoxon rank sum test, which yields evidence that our procedure provides good results.
Fil: Miguel, Fabio Maximilian. Universidad Nacional de Rio Negro. Sede Alto Valle. Sub Sede Villa Regina; Argentina
Fil: Frutos, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Económicas y Sociales del Sur. Universidad Nacional del Sur. Departamento de Economía. Instituto de Investigaciones Económicas y Sociales del Sur; Argentina
Fil: Tohmé, Fernando Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
Fil: Méndez Babey, Máximo. Universidad de Las Palmas de Gran Canaria. Instituto Universitario de Sistemas Inteligentes Siani; Argentina - Materia
-
DECISION MAKING
EVOLUTIONARY COMPUTATION
GENETIC ALGORITHMS
DECISION SUPPORT SYSTEMS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/118476
Ver los metadatos del registro completo
id |
CONICETDig_f3340c8e220a76d5d867f57293720691 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/118476 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A Decision Support Tool for Urban Freight Transport Planning Based on a Multi-Objective Evolutionary AlgorithmMiguel, Fabio MaximilianFrutos, MarianoTohmé, Fernando AbelMéndez Babey, MáximoDECISION MAKINGEVOLUTIONARY COMPUTATIONGENETIC ALGORITHMSDECISION SUPPORT SYSTEMShttps://purl.org/becyt/ford/2.11https://purl.org/becyt/ford/2We present an optimization procedure based on a hybrid version of an evolutionary multiobjective decision-making algorithm for its application in urban freight transportation planning problems. This tool is intended to solve the planning problems of a merchandise distribution firm that dispatches small volume fractional loads of fresh foods on daily schedules. The firm owns a network of distribution centers supplying a large number of small businesses in Buenos Aires and its surroundings. The recombination operator of the evolutionary algorithm used here has been designed specifically for this problem. It is intended to embody a strategy that takes into account constraints like temporary closeness, closeness time window and connectivity in order to improve its performance in the clustering phase. The representation allows incorporating specific information about the actual instances of the problem and uses adaptive control of the parameters in the calibration stage. The performance of the proposed optimizer was tested against the results obtained by two evolutionary algorithms, NSGA II and SPEA 2, widely used in similar problems. We use hypervolume as a measure of convergence and dispersion of Pareto fronts. The statistical analysis of the results obtained with the three algorithms uses the Wilcoxon rank sum test, which yields evidence that our procedure provides good results.Fil: Miguel, Fabio Maximilian. Universidad Nacional de Rio Negro. Sede Alto Valle. Sub Sede Villa Regina; ArgentinaFil: Frutos, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Económicas y Sociales del Sur. Universidad Nacional del Sur. Departamento de Economía. Instituto de Investigaciones Económicas y Sociales del Sur; ArgentinaFil: Tohmé, Fernando Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; ArgentinaFil: Méndez Babey, Máximo. Universidad de Las Palmas de Gran Canaria. Instituto Universitario de Sistemas Inteligentes Siani; ArgentinaInstitute of Electrical and Electronics Engineers2019-11-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/118476Miguel, Fabio Maximilian; Frutos, Mariano; Tohmé, Fernando Abel; Méndez Babey, Máximo; A Decision Support Tool for Urban Freight Transport Planning Based on a Multi-Objective Evolutionary Algorithm; Institute of Electrical and Electronics Engineers; IEEE Access; 7; 1; 7-11-2019; 156707-1567212169-3536CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/8884163/info:eu-repo/semantics/altIdentifier/doi/10.1109/ACCESS.2019.2949948info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:21:04Zoai:ri.conicet.gov.ar:11336/118476instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:21:04.865CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A Decision Support Tool for Urban Freight Transport Planning Based on a Multi-Objective Evolutionary Algorithm |
title |
A Decision Support Tool for Urban Freight Transport Planning Based on a Multi-Objective Evolutionary Algorithm |
spellingShingle |
A Decision Support Tool for Urban Freight Transport Planning Based on a Multi-Objective Evolutionary Algorithm Miguel, Fabio Maximilian DECISION MAKING EVOLUTIONARY COMPUTATION GENETIC ALGORITHMS DECISION SUPPORT SYSTEMS |
title_short |
A Decision Support Tool for Urban Freight Transport Planning Based on a Multi-Objective Evolutionary Algorithm |
title_full |
A Decision Support Tool for Urban Freight Transport Planning Based on a Multi-Objective Evolutionary Algorithm |
title_fullStr |
A Decision Support Tool for Urban Freight Transport Planning Based on a Multi-Objective Evolutionary Algorithm |
title_full_unstemmed |
A Decision Support Tool for Urban Freight Transport Planning Based on a Multi-Objective Evolutionary Algorithm |
title_sort |
A Decision Support Tool for Urban Freight Transport Planning Based on a Multi-Objective Evolutionary Algorithm |
dc.creator.none.fl_str_mv |
Miguel, Fabio Maximilian Frutos, Mariano Tohmé, Fernando Abel Méndez Babey, Máximo |
author |
Miguel, Fabio Maximilian |
author_facet |
Miguel, Fabio Maximilian Frutos, Mariano Tohmé, Fernando Abel Méndez Babey, Máximo |
author_role |
author |
author2 |
Frutos, Mariano Tohmé, Fernando Abel Méndez Babey, Máximo |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
DECISION MAKING EVOLUTIONARY COMPUTATION GENETIC ALGORITHMS DECISION SUPPORT SYSTEMS |
topic |
DECISION MAKING EVOLUTIONARY COMPUTATION GENETIC ALGORITHMS DECISION SUPPORT SYSTEMS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.11 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
We present an optimization procedure based on a hybrid version of an evolutionary multiobjective decision-making algorithm for its application in urban freight transportation planning problems. This tool is intended to solve the planning problems of a merchandise distribution firm that dispatches small volume fractional loads of fresh foods on daily schedules. The firm owns a network of distribution centers supplying a large number of small businesses in Buenos Aires and its surroundings. The recombination operator of the evolutionary algorithm used here has been designed specifically for this problem. It is intended to embody a strategy that takes into account constraints like temporary closeness, closeness time window and connectivity in order to improve its performance in the clustering phase. The representation allows incorporating specific information about the actual instances of the problem and uses adaptive control of the parameters in the calibration stage. The performance of the proposed optimizer was tested against the results obtained by two evolutionary algorithms, NSGA II and SPEA 2, widely used in similar problems. We use hypervolume as a measure of convergence and dispersion of Pareto fronts. The statistical analysis of the results obtained with the three algorithms uses the Wilcoxon rank sum test, which yields evidence that our procedure provides good results. Fil: Miguel, Fabio Maximilian. Universidad Nacional de Rio Negro. Sede Alto Valle. Sub Sede Villa Regina; Argentina Fil: Frutos, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Económicas y Sociales del Sur. Universidad Nacional del Sur. Departamento de Economía. Instituto de Investigaciones Económicas y Sociales del Sur; Argentina Fil: Tohmé, Fernando Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina Fil: Méndez Babey, Máximo. Universidad de Las Palmas de Gran Canaria. Instituto Universitario de Sistemas Inteligentes Siani; Argentina |
description |
We present an optimization procedure based on a hybrid version of an evolutionary multiobjective decision-making algorithm for its application in urban freight transportation planning problems. This tool is intended to solve the planning problems of a merchandise distribution firm that dispatches small volume fractional loads of fresh foods on daily schedules. The firm owns a network of distribution centers supplying a large number of small businesses in Buenos Aires and its surroundings. The recombination operator of the evolutionary algorithm used here has been designed specifically for this problem. It is intended to embody a strategy that takes into account constraints like temporary closeness, closeness time window and connectivity in order to improve its performance in the clustering phase. The representation allows incorporating specific information about the actual instances of the problem and uses adaptive control of the parameters in the calibration stage. The performance of the proposed optimizer was tested against the results obtained by two evolutionary algorithms, NSGA II and SPEA 2, widely used in similar problems. We use hypervolume as a measure of convergence and dispersion of Pareto fronts. The statistical analysis of the results obtained with the three algorithms uses the Wilcoxon rank sum test, which yields evidence that our procedure provides good results. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-11-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/118476 Miguel, Fabio Maximilian; Frutos, Mariano; Tohmé, Fernando Abel; Méndez Babey, Máximo; A Decision Support Tool for Urban Freight Transport Planning Based on a Multi-Objective Evolutionary Algorithm; Institute of Electrical and Electronics Engineers; IEEE Access; 7; 1; 7-11-2019; 156707-156721 2169-3536 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/118476 |
identifier_str_mv |
Miguel, Fabio Maximilian; Frutos, Mariano; Tohmé, Fernando Abel; Méndez Babey, Máximo; A Decision Support Tool for Urban Freight Transport Planning Based on a Multi-Objective Evolutionary Algorithm; Institute of Electrical and Electronics Engineers; IEEE Access; 7; 1; 7-11-2019; 156707-156721 2169-3536 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/8884163/ info:eu-repo/semantics/altIdentifier/doi/10.1109/ACCESS.2019.2949948 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers |
publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614197178007552 |
score |
13.069144 |