On Evolutionary Algorithms for Biclustering of Gene Expression Data
- Autores
- Carballido, Jessica Andrea; Gallo, Cristian Andrés; Dussaut, Julieta Sol; Ponzoni, Ignacio
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Past decades have seen the rapid development of microarray technologies making available large amounts of gene expression data. Hence, has become increasingly important to count with reliable methods that interpret this information in order to discover new biological knowledge. In this review paper we aim to describe the main existing evolutionary methods that analyze microarray gene expression data by means of biclustering techniques. Strategies will be classified according to the evaluation metric they use to quantify the quality of the biclusters. In this context, the main evaluation measures namely mean squared residue, virtual error and transposed virtual error are first presented. Then, the main evolutionary algorithms, which find biclusters in gene expression data matrices using those metrics, are described and compared.
Fil: Carballido, Jessica Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; Argentina
Fil: Gallo, Cristian Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; Argentina
Fil: Dussaut, Julieta Sol. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; Argentina
Fil: Ponzoni, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; Argentina - Materia
-
Evolutionary Algorithms
Biclustering
Gene Expression Data
Evaluation Metrics
Microarray Analysis
Regulatory Networks - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/45891
Ver los metadatos del registro completo
id |
CONICETDig_219e0f925a6ef6d984318e2175352293 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/45891 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
On Evolutionary Algorithms for Biclustering of Gene Expression DataCarballido, Jessica AndreaGallo, Cristian AndrésDussaut, Julieta SolPonzoni, IgnacioEvolutionary AlgorithmsBiclusteringGene Expression DataEvaluation MetricsMicroarray AnalysisRegulatory Networkshttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Past decades have seen the rapid development of microarray technologies making available large amounts of gene expression data. Hence, has become increasingly important to count with reliable methods that interpret this information in order to discover new biological knowledge. In this review paper we aim to describe the main existing evolutionary methods that analyze microarray gene expression data by means of biclustering techniques. Strategies will be classified according to the evaluation metric they use to quantify the quality of the biclusters. In this context, the main evaluation measures namely mean squared residue, virtual error and transposed virtual error are first presented. Then, the main evolutionary algorithms, which find biclusters in gene expression data matrices using those metrics, are described and compared.Fil: Carballido, Jessica Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; ArgentinaFil: Gallo, Cristian Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; ArgentinaFil: Dussaut, Julieta Sol. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; ArgentinaFil: Ponzoni, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; ArgentinaBentham Science Publishers2015-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/45891Carballido, Jessica Andrea; Gallo, Cristian Andrés; Dussaut, Julieta Sol; Ponzoni, Ignacio; On Evolutionary Algorithms for Biclustering of Gene Expression Data; Bentham Science Publishers; Current Bioinformatics; 10; 3; 7-2015; 259-2671574-8936CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.2174/1574893609666140829204739info:eu-repo/semantics/altIdentifier/url/http://www.eurekaselect.com/124284/articleinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:39:00Zoai:ri.conicet.gov.ar:11336/45891instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:39:01.086CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
On Evolutionary Algorithms for Biclustering of Gene Expression Data |
title |
On Evolutionary Algorithms for Biclustering of Gene Expression Data |
spellingShingle |
On Evolutionary Algorithms for Biclustering of Gene Expression Data Carballido, Jessica Andrea Evolutionary Algorithms Biclustering Gene Expression Data Evaluation Metrics Microarray Analysis Regulatory Networks |
title_short |
On Evolutionary Algorithms for Biclustering of Gene Expression Data |
title_full |
On Evolutionary Algorithms for Biclustering of Gene Expression Data |
title_fullStr |
On Evolutionary Algorithms for Biclustering of Gene Expression Data |
title_full_unstemmed |
On Evolutionary Algorithms for Biclustering of Gene Expression Data |
title_sort |
On Evolutionary Algorithms for Biclustering of Gene Expression Data |
dc.creator.none.fl_str_mv |
Carballido, Jessica Andrea Gallo, Cristian Andrés Dussaut, Julieta Sol Ponzoni, Ignacio |
author |
Carballido, Jessica Andrea |
author_facet |
Carballido, Jessica Andrea Gallo, Cristian Andrés Dussaut, Julieta Sol Ponzoni, Ignacio |
author_role |
author |
author2 |
Gallo, Cristian Andrés Dussaut, Julieta Sol Ponzoni, Ignacio |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Evolutionary Algorithms Biclustering Gene Expression Data Evaluation Metrics Microarray Analysis Regulatory Networks |
topic |
Evolutionary Algorithms Biclustering Gene Expression Data Evaluation Metrics Microarray Analysis Regulatory Networks |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Past decades have seen the rapid development of microarray technologies making available large amounts of gene expression data. Hence, has become increasingly important to count with reliable methods that interpret this information in order to discover new biological knowledge. In this review paper we aim to describe the main existing evolutionary methods that analyze microarray gene expression data by means of biclustering techniques. Strategies will be classified according to the evaluation metric they use to quantify the quality of the biclusters. In this context, the main evaluation measures namely mean squared residue, virtual error and transposed virtual error are first presented. Then, the main evolutionary algorithms, which find biclusters in gene expression data matrices using those metrics, are described and compared. Fil: Carballido, Jessica Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; Argentina Fil: Gallo, Cristian Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; Argentina Fil: Dussaut, Julieta Sol. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; Argentina Fil: Ponzoni, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; Argentina |
description |
Past decades have seen the rapid development of microarray technologies making available large amounts of gene expression data. Hence, has become increasingly important to count with reliable methods that interpret this information in order to discover new biological knowledge. In this review paper we aim to describe the main existing evolutionary methods that analyze microarray gene expression data by means of biclustering techniques. Strategies will be classified according to the evaluation metric they use to quantify the quality of the biclusters. In this context, the main evaluation measures namely mean squared residue, virtual error and transposed virtual error are first presented. Then, the main evolutionary algorithms, which find biclusters in gene expression data matrices using those metrics, are described and compared. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/45891 Carballido, Jessica Andrea; Gallo, Cristian Andrés; Dussaut, Julieta Sol; Ponzoni, Ignacio; On Evolutionary Algorithms for Biclustering of Gene Expression Data; Bentham Science Publishers; Current Bioinformatics; 10; 3; 7-2015; 259-267 1574-8936 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/45891 |
identifier_str_mv |
Carballido, Jessica Andrea; Gallo, Cristian Andrés; Dussaut, Julieta Sol; Ponzoni, Ignacio; On Evolutionary Algorithms for Biclustering of Gene Expression Data; Bentham Science Publishers; Current Bioinformatics; 10; 3; 7-2015; 259-267 1574-8936 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.2174/1574893609666140829204739 info:eu-repo/semantics/altIdentifier/url/http://www.eurekaselect.com/124284/article |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Bentham Science Publishers |
publisher.none.fl_str_mv |
Bentham Science Publishers |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083507494846464 |
score |
13.22299 |