Cellular memetic algorithms evaluated on SAT
- Autores
- Alba Torres, Enrique; Dorronsoro, Bernabé; Alfonso, Hugo
- Año de publicación
- 2005
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- In this work, we study the behavior of several cellular memetic algorithms (cMAs) when solving the satisfiability problem (SAT). The proposed cMAs are the result of including hybridization techniques in dif- ferent structural ways into a canonical cellular genetic algorithm (cGA). Specifically, we hybridize our cGA with problem dependent recombination and mutation operators, as well as with three local search methods. Furthermore, two different policies for applying the local search methods are proposed. An adaptive fitness function (SAW), specifically designed for SAT, has been used for the evaluation of the individuals. Our conclusion is that the performance of the cGA is largely improved by these hybrid extensions. The accuracy and effciency of the resulting cMAs are even better than those of the best existing heuristics for SAT in many cases.
VI Workshop de Agentes y Sistemas Inteligentes (WASI)
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
evolutionary algorithms (EAs)
cellular memetic algorithms (cMAs)
satisfiability problem (SAT) - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/22955
Ver los metadatos del registro completo
id |
SEDICI_4760f02da0a9fece2e3599a8684196d7 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/22955 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Cellular memetic algorithms evaluated on SATAlba Torres, EnriqueDorronsoro, BernabéAlfonso, HugoCiencias Informáticasevolutionary algorithms (EAs)cellular memetic algorithms (cMAs)satisfiability problem (SAT)In this work, we study the behavior of several cellular memetic algorithms (cMAs) when solving the satisfiability problem (SAT). The proposed cMAs are the result of including hybridization techniques in dif- ferent structural ways into a canonical cellular genetic algorithm (cGA). Specifically, we hybridize our cGA with problem dependent recombination and mutation operators, as well as with three local search methods. Furthermore, two different policies for applying the local search methods are proposed. An adaptive fitness function (SAW), specifically designed for SAT, has been used for the evaluation of the individuals. Our conclusion is that the performance of the cGA is largely improved by these hybrid extensions. The accuracy and effciency of the resulting cMAs are even better than those of the best existing heuristics for SAT in many cases.VI Workshop de Agentes y Sistemas Inteligentes (WASI)Red de Universidades con Carreras en Informática (RedUNCI)2005-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/22955enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:28:03Zoai:sedici.unlp.edu.ar:10915/22955Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:28:03.569SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Cellular memetic algorithms evaluated on SAT |
title |
Cellular memetic algorithms evaluated on SAT |
spellingShingle |
Cellular memetic algorithms evaluated on SAT Alba Torres, Enrique Ciencias Informáticas evolutionary algorithms (EAs) cellular memetic algorithms (cMAs) satisfiability problem (SAT) |
title_short |
Cellular memetic algorithms evaluated on SAT |
title_full |
Cellular memetic algorithms evaluated on SAT |
title_fullStr |
Cellular memetic algorithms evaluated on SAT |
title_full_unstemmed |
Cellular memetic algorithms evaluated on SAT |
title_sort |
Cellular memetic algorithms evaluated on SAT |
dc.creator.none.fl_str_mv |
Alba Torres, Enrique Dorronsoro, Bernabé Alfonso, Hugo |
author |
Alba Torres, Enrique |
author_facet |
Alba Torres, Enrique Dorronsoro, Bernabé Alfonso, Hugo |
author_role |
author |
author2 |
Dorronsoro, Bernabé Alfonso, Hugo |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas evolutionary algorithms (EAs) cellular memetic algorithms (cMAs) satisfiability problem (SAT) |
topic |
Ciencias Informáticas evolutionary algorithms (EAs) cellular memetic algorithms (cMAs) satisfiability problem (SAT) |
dc.description.none.fl_txt_mv |
In this work, we study the behavior of several cellular memetic algorithms (cMAs) when solving the satisfiability problem (SAT). The proposed cMAs are the result of including hybridization techniques in dif- ferent structural ways into a canonical cellular genetic algorithm (cGA). Specifically, we hybridize our cGA with problem dependent recombination and mutation operators, as well as with three local search methods. Furthermore, two different policies for applying the local search methods are proposed. An adaptive fitness function (SAW), specifically designed for SAT, has been used for the evaluation of the individuals. Our conclusion is that the performance of the cGA is largely improved by these hybrid extensions. The accuracy and effciency of the resulting cMAs are even better than those of the best existing heuristics for SAT in many cases. VI Workshop de Agentes y Sistemas Inteligentes (WASI) Red de Universidades con Carreras en Informática (RedUNCI) |
description |
In this work, we study the behavior of several cellular memetic algorithms (cMAs) when solving the satisfiability problem (SAT). The proposed cMAs are the result of including hybridization techniques in dif- ferent structural ways into a canonical cellular genetic algorithm (cGA). Specifically, we hybridize our cGA with problem dependent recombination and mutation operators, as well as with three local search methods. Furthermore, two different policies for applying the local search methods are proposed. An adaptive fitness function (SAW), specifically designed for SAT, has been used for the evaluation of the individuals. Our conclusion is that the performance of the cGA is largely improved by these hybrid extensions. The accuracy and effciency of the resulting cMAs are even better than those of the best existing heuristics for SAT in many cases. |
publishDate |
2005 |
dc.date.none.fl_str_mv |
2005-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/22955 |
url |
http://sedici.unlp.edu.ar/handle/10915/22955 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842260119257088000 |
score |
13.13397 |