Cellular memetic algorithms evaluated on SAT

Autores
Alba Torres, Enrique; Dorronsoro, Bernabé; Alfonso, Hugo
Año de publicación
2005
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
In this work, we study the behavior of several cellular memetic algorithms (cMAs) when solving the satisfiability problem (SAT). The proposed cMAs are the result of including hybridization techniques in dif- ferent structural ways into a canonical cellular genetic algorithm (cGA). Specifically, we hybridize our cGA with problem dependent recombination and mutation operators, as well as with three local search methods. Furthermore, two different policies for applying the local search methods are proposed. An adaptive fitness function (SAW), specifically designed for SAT, has been used for the evaluation of the individuals. Our conclusion is that the performance of the cGA is largely improved by these hybrid extensions. The accuracy and effciency of the resulting cMAs are even better than those of the best existing heuristics for SAT in many cases.
VI Workshop de Agentes y Sistemas Inteligentes (WASI)
Red de Universidades con Carreras en Informática (RedUNCI)
Materia
Ciencias Informáticas
evolutionary algorithms (EAs)
cellular memetic algorithms (cMAs)
satisfiability problem (SAT)
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/22955

id SEDICI_4760f02da0a9fece2e3599a8684196d7
oai_identifier_str oai:sedici.unlp.edu.ar:10915/22955
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Cellular memetic algorithms evaluated on SATAlba Torres, EnriqueDorronsoro, BernabéAlfonso, HugoCiencias Informáticasevolutionary algorithms (EAs)cellular memetic algorithms (cMAs)satisfiability problem (SAT)In this work, we study the behavior of several cellular memetic algorithms (cMAs) when solving the satisfiability problem (SAT). The proposed cMAs are the result of including hybridization techniques in dif- ferent structural ways into a canonical cellular genetic algorithm (cGA). Specifically, we hybridize our cGA with problem dependent recombination and mutation operators, as well as with three local search methods. Furthermore, two different policies for applying the local search methods are proposed. An adaptive fitness function (SAW), specifically designed for SAT, has been used for the evaluation of the individuals. Our conclusion is that the performance of the cGA is largely improved by these hybrid extensions. The accuracy and effciency of the resulting cMAs are even better than those of the best existing heuristics for SAT in many cases.VI Workshop de Agentes y Sistemas Inteligentes (WASI)Red de Universidades con Carreras en Informática (RedUNCI)2005-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/22955enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:28:03Zoai:sedici.unlp.edu.ar:10915/22955Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:28:03.569SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Cellular memetic algorithms evaluated on SAT
title Cellular memetic algorithms evaluated on SAT
spellingShingle Cellular memetic algorithms evaluated on SAT
Alba Torres, Enrique
Ciencias Informáticas
evolutionary algorithms (EAs)
cellular memetic algorithms (cMAs)
satisfiability problem (SAT)
title_short Cellular memetic algorithms evaluated on SAT
title_full Cellular memetic algorithms evaluated on SAT
title_fullStr Cellular memetic algorithms evaluated on SAT
title_full_unstemmed Cellular memetic algorithms evaluated on SAT
title_sort Cellular memetic algorithms evaluated on SAT
dc.creator.none.fl_str_mv Alba Torres, Enrique
Dorronsoro, Bernabé
Alfonso, Hugo
author Alba Torres, Enrique
author_facet Alba Torres, Enrique
Dorronsoro, Bernabé
Alfonso, Hugo
author_role author
author2 Dorronsoro, Bernabé
Alfonso, Hugo
author2_role author
author
dc.subject.none.fl_str_mv Ciencias Informáticas
evolutionary algorithms (EAs)
cellular memetic algorithms (cMAs)
satisfiability problem (SAT)
topic Ciencias Informáticas
evolutionary algorithms (EAs)
cellular memetic algorithms (cMAs)
satisfiability problem (SAT)
dc.description.none.fl_txt_mv In this work, we study the behavior of several cellular memetic algorithms (cMAs) when solving the satisfiability problem (SAT). The proposed cMAs are the result of including hybridization techniques in dif- ferent structural ways into a canonical cellular genetic algorithm (cGA). Specifically, we hybridize our cGA with problem dependent recombination and mutation operators, as well as with three local search methods. Furthermore, two different policies for applying the local search methods are proposed. An adaptive fitness function (SAW), specifically designed for SAT, has been used for the evaluation of the individuals. Our conclusion is that the performance of the cGA is largely improved by these hybrid extensions. The accuracy and effciency of the resulting cMAs are even better than those of the best existing heuristics for SAT in many cases.
VI Workshop de Agentes y Sistemas Inteligentes (WASI)
Red de Universidades con Carreras en Informática (RedUNCI)
description In this work, we study the behavior of several cellular memetic algorithms (cMAs) when solving the satisfiability problem (SAT). The proposed cMAs are the result of including hybridization techniques in dif- ferent structural ways into a canonical cellular genetic algorithm (cGA). Specifically, we hybridize our cGA with problem dependent recombination and mutation operators, as well as with three local search methods. Furthermore, two different policies for applying the local search methods are proposed. An adaptive fitness function (SAW), specifically designed for SAT, has been used for the evaluation of the individuals. Our conclusion is that the performance of the cGA is largely improved by these hybrid extensions. The accuracy and effciency of the resulting cMAs are even better than those of the best existing heuristics for SAT in many cases.
publishDate 2005
dc.date.none.fl_str_mv 2005-10
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/22955
url http://sedici.unlp.edu.ar/handle/10915/22955
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1842260119257088000
score 13.13397