Real-time SSVEP measurements through Lock-in detection in FPGA-based platform
- Autores
- Oliva, Matías Javier; Guerrero, Federico Nicolás; García, Pablo Andrés; Spinelli, Enrique Mario
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- In this work, a method for measuring steady-state visually evoked potentials using the Lock-In technique is presented. The proposed method in- volves acquiring the electroencephalography signal through channel averaging from an ADS1299 sigma-delta converter, without the need for additional hardware to accommodate the signal and processing in real-time using an Intel MAX10 FPGA, while visual stimuli synchronized with the sampling and pro- cessing are generated. The result is a robust platform that allows determining a user's attention focus on visual stimuli flickering at 14.70, 16.67, and 19.23 Hz. The initial experimental tests of the system with three subjects validated the platform, obtaining an average signal-to-noise ratio of 3.2 in the detection, with a maximum of 6.2 in the case of an experienced SSVEP user.
Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales - Materia
-
Ingeniería
SSVEP
FPGA
EEG
Lock-in - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-nd/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/160849
Ver los metadatos del registro completo
id |
SEDICI_6c0a2d0ac6a1d607ff3a75a58d10d2b7 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/160849 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Real-time SSVEP measurements through Lock-in detection in FPGA-based platformOliva, Matías JavierGuerrero, Federico NicolásGarcía, Pablo AndrésSpinelli, Enrique MarioIngenieríaSSVEPFPGAEEGLock-inIn this work, a method for measuring steady-state visually evoked potentials using the Lock-In technique is presented. The proposed method in- volves acquiring the electroencephalography signal through channel averaging from an ADS1299 sigma-delta converter, without the need for additional hardware to accommodate the signal and processing in real-time using an Intel MAX10 FPGA, while visual stimuli synchronized with the sampling and pro- cessing are generated. The result is a robust platform that allows determining a user's attention focus on visual stimuli flickering at 14.70, 16.67, and 19.23 Hz. The initial experimental tests of the system with three subjects validated the platform, obtaining an average signal-to-noise ratio of 3.2 in the detection, with a maximum of 6.2 in the case of an experienced SSVEP user.Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales2023-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/160849enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/4.0/Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T11:14:06Zoai:sedici.unlp.edu.ar:10915/160849Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 11:14:06.189SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Real-time SSVEP measurements through Lock-in detection in FPGA-based platform |
title |
Real-time SSVEP measurements through Lock-in detection in FPGA-based platform |
spellingShingle |
Real-time SSVEP measurements through Lock-in detection in FPGA-based platform Oliva, Matías Javier Ingeniería SSVEP FPGA EEG Lock-in |
title_short |
Real-time SSVEP measurements through Lock-in detection in FPGA-based platform |
title_full |
Real-time SSVEP measurements through Lock-in detection in FPGA-based platform |
title_fullStr |
Real-time SSVEP measurements through Lock-in detection in FPGA-based platform |
title_full_unstemmed |
Real-time SSVEP measurements through Lock-in detection in FPGA-based platform |
title_sort |
Real-time SSVEP measurements through Lock-in detection in FPGA-based platform |
dc.creator.none.fl_str_mv |
Oliva, Matías Javier Guerrero, Federico Nicolás García, Pablo Andrés Spinelli, Enrique Mario |
author |
Oliva, Matías Javier |
author_facet |
Oliva, Matías Javier Guerrero, Federico Nicolás García, Pablo Andrés Spinelli, Enrique Mario |
author_role |
author |
author2 |
Guerrero, Federico Nicolás García, Pablo Andrés Spinelli, Enrique Mario |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Ingeniería SSVEP FPGA EEG Lock-in |
topic |
Ingeniería SSVEP FPGA EEG Lock-in |
dc.description.none.fl_txt_mv |
In this work, a method for measuring steady-state visually evoked potentials using the Lock-In technique is presented. The proposed method in- volves acquiring the electroencephalography signal through channel averaging from an ADS1299 sigma-delta converter, without the need for additional hardware to accommodate the signal and processing in real-time using an Intel MAX10 FPGA, while visual stimuli synchronized with the sampling and pro- cessing are generated. The result is a robust platform that allows determining a user's attention focus on visual stimuli flickering at 14.70, 16.67, and 19.23 Hz. The initial experimental tests of the system with three subjects validated the platform, obtaining an average signal-to-noise ratio of 3.2 in the detection, with a maximum of 6.2 in the case of an experienced SSVEP user. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales |
description |
In this work, a method for measuring steady-state visually evoked potentials using the Lock-In technique is presented. The proposed method in- volves acquiring the electroencephalography signal through channel averaging from an ADS1299 sigma-delta converter, without the need for additional hardware to accommodate the signal and processing in real-time using an Intel MAX10 FPGA, while visual stimuli synchronized with the sampling and pro- cessing are generated. The result is a robust platform that allows determining a user's attention focus on visual stimuli flickering at 14.70, 16.67, and 19.23 Hz. The initial experimental tests of the system with three subjects validated the platform, obtaining an average signal-to-noise ratio of 3.2 in the detection, with a maximum of 6.2 in the case of an experienced SSVEP user. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/160849 |
url |
http://sedici.unlp.edu.ar/handle/10915/160849 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-nd/4.0/ Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842260646159187968 |
score |
13.13397 |