Producción de xilitol a partir de la hidrogenación de xilosa en fase acuosa con catalizadores de níquel

Autores
Cerioni, J. L.; Nichio, Nora N.; Santori, Gerardo Fabián
Año de publicación
2019
Idioma
español castellano
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
La hemicelulosa es el segundo polisacárido más abundante en la naturaleza, después de la celulosa, y a partir de ella puede obtenerse una gran variedad de productos de alto valor agregado. Su estructura heterogénea incluye pentosas (xilosa y arabinosa), hexosas (glucosa, manosa, galactosa) y algunos ácidos (ácido acético, ácido D-glucurónico y ácido D-galacturónico) en mayor o menor medida, en función de la biomasa de la cual provenga. Cuando este heteropolisacárido proviene de materiales lignocelulósicos, su composición presenta gran cantidad de pentosas (principalmente xilanos), y es una buena materia prima para la producción de compuestos de valor agregado de la xilosa (el segundo monosacárido más abundante en la naturaleza), como el xilitol. Los residuos lignocelulósicos, incluyendo varios desechos agrícola-forestales son materiales de bajo costo y amplia disponibilidad para la producción de xilitol. Algunos ejemplos del contenido de xilosa en estas fuentes son: 28-35% en la mazorca de maíz, 26- 28% en el bagazo de caña de azúcar y 21% en el pasto varilla. Particularmente, el bagazo de caña de azúcar es un residuo que se encuentra disponible en Argentina en grandes cantidades, dado que se generan 180-280 kg de bagazo/tonelada de caña de azúcar procesada. El xilitol es un polialcohol altamente soluble en agua, con poder endulzante similar al de la sacarosa, por lo que es utilizado como un sustituto del azúcar, especialmente adecuado para el consumo de personas diabéticas, posee propiedades anti-caries y anti-carcinógenas, entre otras. Este producto puede ser hallado en concentraciones bajas (<0,9%) naturalmente en frutas y vegetales, pero la extracción de estas fuentes es difícil y muy poco rentable. La producción y la calidad del xilitol obtenido depende de la pureza de la solución inicial de xilosa, mientras que la presencia de impurezas interfiere con la reacción catalítica, por lo que los pasos de purificación son necesarios para obtener alta pureza de la solución de xilosa. El método industrial convencional para la obtención de xilitol es la conversión química de xilosa por hidrogenación sobre Níquel Raney. El catalizador es removido luego de la hidrogenación catalítica por filtración; luego, la solución es concentrada y fraccionada por cromatografía para remover los subproductos. Finalmente, la solución de xilitol concentrada es cristalizada para obtener el producto puro. El objetivo de este trabajo es estudiar la hidrogenación de muestras de xilosa provenientes de tratamientos hidrotérmicos del bagazo de caña de azúcar, utilizando catalizadores de níquel para obtener xilitol.
Sección: Ingeniería Química.
Facultad de Ingeniería
Materia
Ingeniería Química
Xilitol
Hidrogenación
Catalizador
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/75718

id SEDICI_6a382fb8e36b48e186e68e797881e30e
oai_identifier_str oai:sedici.unlp.edu.ar:10915/75718
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Producción de xilitol a partir de la hidrogenación de xilosa en fase acuosa con catalizadores de níquelCerioni, J. L.Nichio, Nora N.Santori, Gerardo FabiánIngeniería QuímicaXilitolHidrogenaciónCatalizadorLa hemicelulosa es el segundo polisacárido más abundante en la naturaleza, después de la celulosa, y a partir de ella puede obtenerse una gran variedad de productos de alto valor agregado. Su estructura heterogénea incluye pentosas (xilosa y arabinosa), hexosas (glucosa, manosa, galactosa) y algunos ácidos (ácido acético, ácido D-glucurónico y ácido D-galacturónico) en mayor o menor medida, en función de la biomasa de la cual provenga. Cuando este heteropolisacárido proviene de materiales lignocelulósicos, su composición presenta gran cantidad de pentosas (principalmente xilanos), y es una buena materia prima para la producción de compuestos de valor agregado de la xilosa (el segundo monosacárido más abundante en la naturaleza), como el xilitol. Los residuos lignocelulósicos, incluyendo varios desechos agrícola-forestales son materiales de bajo costo y amplia disponibilidad para la producción de xilitol. Algunos ejemplos del contenido de xilosa en estas fuentes son: 28-35% en la mazorca de maíz, 26- 28% en el bagazo de caña de azúcar y 21% en el pasto varilla. Particularmente, el bagazo de caña de azúcar es un residuo que se encuentra disponible en Argentina en grandes cantidades, dado que se generan 180-280 kg de bagazo/tonelada de caña de azúcar procesada. El xilitol es un polialcohol altamente soluble en agua, con poder endulzante similar al de la sacarosa, por lo que es utilizado como un sustituto del azúcar, especialmente adecuado para el consumo de personas diabéticas, posee propiedades anti-caries y anti-carcinógenas, entre otras. Este producto puede ser hallado en concentraciones bajas (&lt;0,9%) naturalmente en frutas y vegetales, pero la extracción de estas fuentes es difícil y muy poco rentable. La producción y la calidad del xilitol obtenido depende de la pureza de la solución inicial de xilosa, mientras que la presencia de impurezas interfiere con la reacción catalítica, por lo que los pasos de purificación son necesarios para obtener alta pureza de la solución de xilosa. El método industrial convencional para la obtención de xilitol es la conversión química de xilosa por hidrogenación sobre Níquel Raney. El catalizador es removido luego de la hidrogenación catalítica por filtración; luego, la solución es concentrada y fraccionada por cromatografía para remover los subproductos. Finalmente, la solución de xilitol concentrada es cristalizada para obtener el producto puro. El objetivo de este trabajo es estudiar la hidrogenación de muestras de xilosa provenientes de tratamientos hidrotérmicos del bagazo de caña de azúcar, utilizando catalizadores de níquel para obtener xilitol.Sección: Ingeniería Química.Facultad de Ingeniería2019-04info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionResumenhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf679-684http://sedici.unlp.edu.ar/handle/10915/75718spainfo:eu-repo/semantics/altIdentifier/isbn/978-950-34-1749-2info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:13:14Zoai:sedici.unlp.edu.ar:10915/75718Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:13:14.815SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Producción de xilitol a partir de la hidrogenación de xilosa en fase acuosa con catalizadores de níquel
title Producción de xilitol a partir de la hidrogenación de xilosa en fase acuosa con catalizadores de níquel
spellingShingle Producción de xilitol a partir de la hidrogenación de xilosa en fase acuosa con catalizadores de níquel
Cerioni, J. L.
Ingeniería Química
Xilitol
Hidrogenación
Catalizador
title_short Producción de xilitol a partir de la hidrogenación de xilosa en fase acuosa con catalizadores de níquel
title_full Producción de xilitol a partir de la hidrogenación de xilosa en fase acuosa con catalizadores de níquel
title_fullStr Producción de xilitol a partir de la hidrogenación de xilosa en fase acuosa con catalizadores de níquel
title_full_unstemmed Producción de xilitol a partir de la hidrogenación de xilosa en fase acuosa con catalizadores de níquel
title_sort Producción de xilitol a partir de la hidrogenación de xilosa en fase acuosa con catalizadores de níquel
dc.creator.none.fl_str_mv Cerioni, J. L.
Nichio, Nora N.
Santori, Gerardo Fabián
author Cerioni, J. L.
author_facet Cerioni, J. L.
Nichio, Nora N.
Santori, Gerardo Fabián
author_role author
author2 Nichio, Nora N.
Santori, Gerardo Fabián
author2_role author
author
dc.subject.none.fl_str_mv Ingeniería Química
Xilitol
Hidrogenación
Catalizador
topic Ingeniería Química
Xilitol
Hidrogenación
Catalizador
dc.description.none.fl_txt_mv La hemicelulosa es el segundo polisacárido más abundante en la naturaleza, después de la celulosa, y a partir de ella puede obtenerse una gran variedad de productos de alto valor agregado. Su estructura heterogénea incluye pentosas (xilosa y arabinosa), hexosas (glucosa, manosa, galactosa) y algunos ácidos (ácido acético, ácido D-glucurónico y ácido D-galacturónico) en mayor o menor medida, en función de la biomasa de la cual provenga. Cuando este heteropolisacárido proviene de materiales lignocelulósicos, su composición presenta gran cantidad de pentosas (principalmente xilanos), y es una buena materia prima para la producción de compuestos de valor agregado de la xilosa (el segundo monosacárido más abundante en la naturaleza), como el xilitol. Los residuos lignocelulósicos, incluyendo varios desechos agrícola-forestales son materiales de bajo costo y amplia disponibilidad para la producción de xilitol. Algunos ejemplos del contenido de xilosa en estas fuentes son: 28-35% en la mazorca de maíz, 26- 28% en el bagazo de caña de azúcar y 21% en el pasto varilla. Particularmente, el bagazo de caña de azúcar es un residuo que se encuentra disponible en Argentina en grandes cantidades, dado que se generan 180-280 kg de bagazo/tonelada de caña de azúcar procesada. El xilitol es un polialcohol altamente soluble en agua, con poder endulzante similar al de la sacarosa, por lo que es utilizado como un sustituto del azúcar, especialmente adecuado para el consumo de personas diabéticas, posee propiedades anti-caries y anti-carcinógenas, entre otras. Este producto puede ser hallado en concentraciones bajas (&lt;0,9%) naturalmente en frutas y vegetales, pero la extracción de estas fuentes es difícil y muy poco rentable. La producción y la calidad del xilitol obtenido depende de la pureza de la solución inicial de xilosa, mientras que la presencia de impurezas interfiere con la reacción catalítica, por lo que los pasos de purificación son necesarios para obtener alta pureza de la solución de xilosa. El método industrial convencional para la obtención de xilitol es la conversión química de xilosa por hidrogenación sobre Níquel Raney. El catalizador es removido luego de la hidrogenación catalítica por filtración; luego, la solución es concentrada y fraccionada por cromatografía para remover los subproductos. Finalmente, la solución de xilitol concentrada es cristalizada para obtener el producto puro. El objetivo de este trabajo es estudiar la hidrogenación de muestras de xilosa provenientes de tratamientos hidrotérmicos del bagazo de caña de azúcar, utilizando catalizadores de níquel para obtener xilitol.
Sección: Ingeniería Química.
Facultad de Ingeniería
description La hemicelulosa es el segundo polisacárido más abundante en la naturaleza, después de la celulosa, y a partir de ella puede obtenerse una gran variedad de productos de alto valor agregado. Su estructura heterogénea incluye pentosas (xilosa y arabinosa), hexosas (glucosa, manosa, galactosa) y algunos ácidos (ácido acético, ácido D-glucurónico y ácido D-galacturónico) en mayor o menor medida, en función de la biomasa de la cual provenga. Cuando este heteropolisacárido proviene de materiales lignocelulósicos, su composición presenta gran cantidad de pentosas (principalmente xilanos), y es una buena materia prima para la producción de compuestos de valor agregado de la xilosa (el segundo monosacárido más abundante en la naturaleza), como el xilitol. Los residuos lignocelulósicos, incluyendo varios desechos agrícola-forestales son materiales de bajo costo y amplia disponibilidad para la producción de xilitol. Algunos ejemplos del contenido de xilosa en estas fuentes son: 28-35% en la mazorca de maíz, 26- 28% en el bagazo de caña de azúcar y 21% en el pasto varilla. Particularmente, el bagazo de caña de azúcar es un residuo que se encuentra disponible en Argentina en grandes cantidades, dado que se generan 180-280 kg de bagazo/tonelada de caña de azúcar procesada. El xilitol es un polialcohol altamente soluble en agua, con poder endulzante similar al de la sacarosa, por lo que es utilizado como un sustituto del azúcar, especialmente adecuado para el consumo de personas diabéticas, posee propiedades anti-caries y anti-carcinógenas, entre otras. Este producto puede ser hallado en concentraciones bajas (&lt;0,9%) naturalmente en frutas y vegetales, pero la extracción de estas fuentes es difícil y muy poco rentable. La producción y la calidad del xilitol obtenido depende de la pureza de la solución inicial de xilosa, mientras que la presencia de impurezas interfiere con la reacción catalítica, por lo que los pasos de purificación son necesarios para obtener alta pureza de la solución de xilosa. El método industrial convencional para la obtención de xilitol es la conversión química de xilosa por hidrogenación sobre Níquel Raney. El catalizador es removido luego de la hidrogenación catalítica por filtración; luego, la solución es concentrada y fraccionada por cromatografía para remover los subproductos. Finalmente, la solución de xilitol concentrada es cristalizada para obtener el producto puro. El objetivo de este trabajo es estudiar la hidrogenación de muestras de xilosa provenientes de tratamientos hidrotérmicos del bagazo de caña de azúcar, utilizando catalizadores de níquel para obtener xilitol.
publishDate 2019
dc.date.none.fl_str_mv 2019-04
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Resumen
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/75718
url http://sedici.unlp.edu.ar/handle/10915/75718
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/isbn/978-950-34-1749-2
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
dc.format.none.fl_str_mv application/pdf
679-684
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616002907668480
score 13.070432