Catalizadores metálicos soportados para la hidrogenólisis de compuestos provenientes de biomasa
- Autores
- Cerioni, Julieta Lucía
- Año de publicación
- 2020
- Idioma
- español castellano
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Los materiales lignocelulósicos constituyen uno de los residuos más abundantes de la biomasa y han ganado gran interés en los últimos años, dado que su uso como materia prima en biorrefinerías podría dar origen a la obtención no solo de combustibles y energía, sino productos de alto valor agregado. En particular, el bagazo de caña de azúcar presenta alto contenido de xilanos, por lo que tiene un enorme potencial para su uso en la industria. El 97% del total de la producción de caña de azúcar de Argentina, se centra en las provincias de Tucumán, Jujuy y Salta, distribuyéndose el resto entre Santa Fe y Misiones. En el año 2017, según datos del Ministerio de Hacienda, Argentina produjo el 1,2% del total mundial de caña de azúcar, lo que representa una producción de alrededor de 19 millones de toneladas. Aproximadamente el 30% de la caña de azúcar se transforma en bagazo, que está compuesto por celulosa (35-43%), hemicelulosa (25-32%), lignina (21-23%), y compuestos orgánicos e inorgánicos solubles en pequeña proporción, llamados extractivos (2-11%). Esta complejidad estructural hace que sean necesarios pretratamientos para poder extraer los componentes principales. En primer lugar, se lleva a cabo un pretratamiento de autohidrólisis, en medio acuoso, que permite la desagregación de los complejos lignina-carbohidrato, alterando las propiedades físicas de la fibra y facilitando la extracción de celulosa amorfa y hemicelulosas, además de obtener un pequeño porcentaje de oligo- y monosacáridos provenientes de la hidrólisis de estos polímeros. También, una pequeña proporción de la lignina es degradada en estas condiciones, causando la presencia de una baja concentración de compuestos hidroxifenólicos. Al final de la autohidrólisis, la fracción soluble de hemicelulosas (licor) es separada del residuo sólido, compuesto principalmente por celulosa cristalina y lignina. El desarrollo de mi tesis doctoral propone que este licor rico en hemicelulosas sea sometido a un tratamiento de hidrólisis empleando catalizadores ácidos, con el objetivo de obtener los azúcares monoméricos que componen los polímeros. Estos catalizadores sólidos deben poseer sitios ácidos fuertes de Brønsted, por lo que se han desarrollado sólidos carbonosos modificados para otorgarle la acidez necesaria y comparados con una resina sulfonada comercial. Se ha obtenido licores con distintos contenidos de xilosa, debido a las diferentes propiedades de los materiales empleados. En todos los casos, estos licores purificados por medio de neutralización a pH=6 y filtración para eliminar impurezas, son empleados para la síntesis de xilitol por hidrogenación de la xilosa. Para esta reacción se emplean catalizadores metálicos soportados, que permiten obtener 80 % de conversión de xilosa con 100% de selectividad a xilitol. Se estudia la estabilidad de los diferentes catalizadores metálicos frente al leaching o lixiviado metálico.
Carrera: Doctorado en Ingeniería Tipo de beca: Doctoral Año de inicio de beca: 2017 Año de finalización de beca: 2022 Organismo: CONICET Apellido, Nombre del Director/a/e: Santori, Gerardo F. Apellido, Nombre del Codirector/a/e: Nichio, Nora N. Tipo de investigación: Básica
Facultad de Ingeniería
Centro de Investigación y Desarrollo en Ciencias Aplicadas - Materia
-
Ingeniería Química
Biomasa
Hidrólisis
Xilose
Hidrogenación
Xilitol
Biomass
Hydrolysis
Hydrogenation - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/114045
Ver los metadatos del registro completo
id |
SEDICI_dff418b85527522d68f9ba76816801b9 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/114045 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Catalizadores metálicos soportados para la hidrogenólisis de compuestos provenientes de biomasaSupported metallic catalysts for the hydrogenolysis of biomass compoundsCerioni, Julieta LucíaIngeniería QuímicaBiomasaHidrólisisXiloseHidrogenaciónXilitolBiomassHydrolysisHydrogenationLos materiales lignocelulósicos constituyen uno de los residuos más abundantes de la biomasa y han ganado gran interés en los últimos años, dado que su uso como materia prima en biorrefinerías podría dar origen a la obtención no solo de combustibles y energía, sino productos de alto valor agregado. En particular, el bagazo de caña de azúcar presenta alto contenido de xilanos, por lo que tiene un enorme potencial para su uso en la industria. El 97% del total de la producción de caña de azúcar de Argentina, se centra en las provincias de Tucumán, Jujuy y Salta, distribuyéndose el resto entre Santa Fe y Misiones. En el año 2017, según datos del Ministerio de Hacienda, Argentina produjo el 1,2% del total mundial de caña de azúcar, lo que representa una producción de alrededor de 19 millones de toneladas. Aproximadamente el 30% de la caña de azúcar se transforma en bagazo, que está compuesto por celulosa (35-43%), hemicelulosa (25-32%), lignina (21-23%), y compuestos orgánicos e inorgánicos solubles en pequeña proporción, llamados extractivos (2-11%). Esta complejidad estructural hace que sean necesarios pretratamientos para poder extraer los componentes principales. En primer lugar, se lleva a cabo un pretratamiento de autohidrólisis, en medio acuoso, que permite la desagregación de los complejos lignina-carbohidrato, alterando las propiedades físicas de la fibra y facilitando la extracción de celulosa amorfa y hemicelulosas, además de obtener un pequeño porcentaje de oligo- y monosacáridos provenientes de la hidrólisis de estos polímeros. También, una pequeña proporción de la lignina es degradada en estas condiciones, causando la presencia de una baja concentración de compuestos hidroxifenólicos. Al final de la autohidrólisis, la fracción soluble de hemicelulosas (licor) es separada del residuo sólido, compuesto principalmente por celulosa cristalina y lignina. El desarrollo de mi tesis doctoral propone que este licor rico en hemicelulosas sea sometido a un tratamiento de hidrólisis empleando catalizadores ácidos, con el objetivo de obtener los azúcares monoméricos que componen los polímeros. Estos catalizadores sólidos deben poseer sitios ácidos fuertes de Brønsted, por lo que se han desarrollado sólidos carbonosos modificados para otorgarle la acidez necesaria y comparados con una resina sulfonada comercial. Se ha obtenido licores con distintos contenidos de xilosa, debido a las diferentes propiedades de los materiales empleados. En todos los casos, estos licores purificados por medio de neutralización a pH=6 y filtración para eliminar impurezas, son empleados para la síntesis de xilitol por hidrogenación de la xilosa. Para esta reacción se emplean catalizadores metálicos soportados, que permiten obtener 80 % de conversión de xilosa con 100% de selectividad a xilitol. Se estudia la estabilidad de los diferentes catalizadores metálicos frente al leaching o lixiviado metálico.Carrera: Doctorado en Ingeniería Tipo de beca: Doctoral Año de inicio de beca: 2017 Año de finalización de beca: 2022 Organismo: CONICET Apellido, Nombre del Director/a/e: Santori, Gerardo F. Apellido, Nombre del Codirector/a/e: Nichio, Nora N. Tipo de investigación: BásicaFacultad de IngenieríaCentro de Investigación y Desarrollo en Ciencias Aplicadas2020-11-12info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaimage/jpeghttp://sedici.unlp.edu.ar/handle/10915/114045spainfo:eu-repo/semantics/altIdentifier/url/https://congresos.unlp.edu.ar/ebec2020/julieta-lucia-cerioniinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:26:34Zoai:sedici.unlp.edu.ar:10915/114045Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:26:34.776SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Catalizadores metálicos soportados para la hidrogenólisis de compuestos provenientes de biomasa Supported metallic catalysts for the hydrogenolysis of biomass compounds |
title |
Catalizadores metálicos soportados para la hidrogenólisis de compuestos provenientes de biomasa |
spellingShingle |
Catalizadores metálicos soportados para la hidrogenólisis de compuestos provenientes de biomasa Cerioni, Julieta Lucía Ingeniería Química Biomasa Hidrólisis Xilose Hidrogenación Xilitol Biomass Hydrolysis Hydrogenation |
title_short |
Catalizadores metálicos soportados para la hidrogenólisis de compuestos provenientes de biomasa |
title_full |
Catalizadores metálicos soportados para la hidrogenólisis de compuestos provenientes de biomasa |
title_fullStr |
Catalizadores metálicos soportados para la hidrogenólisis de compuestos provenientes de biomasa |
title_full_unstemmed |
Catalizadores metálicos soportados para la hidrogenólisis de compuestos provenientes de biomasa |
title_sort |
Catalizadores metálicos soportados para la hidrogenólisis de compuestos provenientes de biomasa |
dc.creator.none.fl_str_mv |
Cerioni, Julieta Lucía |
author |
Cerioni, Julieta Lucía |
author_facet |
Cerioni, Julieta Lucía |
author_role |
author |
dc.subject.none.fl_str_mv |
Ingeniería Química Biomasa Hidrólisis Xilose Hidrogenación Xilitol Biomass Hydrolysis Hydrogenation |
topic |
Ingeniería Química Biomasa Hidrólisis Xilose Hidrogenación Xilitol Biomass Hydrolysis Hydrogenation |
dc.description.none.fl_txt_mv |
Los materiales lignocelulósicos constituyen uno de los residuos más abundantes de la biomasa y han ganado gran interés en los últimos años, dado que su uso como materia prima en biorrefinerías podría dar origen a la obtención no solo de combustibles y energía, sino productos de alto valor agregado. En particular, el bagazo de caña de azúcar presenta alto contenido de xilanos, por lo que tiene un enorme potencial para su uso en la industria. El 97% del total de la producción de caña de azúcar de Argentina, se centra en las provincias de Tucumán, Jujuy y Salta, distribuyéndose el resto entre Santa Fe y Misiones. En el año 2017, según datos del Ministerio de Hacienda, Argentina produjo el 1,2% del total mundial de caña de azúcar, lo que representa una producción de alrededor de 19 millones de toneladas. Aproximadamente el 30% de la caña de azúcar se transforma en bagazo, que está compuesto por celulosa (35-43%), hemicelulosa (25-32%), lignina (21-23%), y compuestos orgánicos e inorgánicos solubles en pequeña proporción, llamados extractivos (2-11%). Esta complejidad estructural hace que sean necesarios pretratamientos para poder extraer los componentes principales. En primer lugar, se lleva a cabo un pretratamiento de autohidrólisis, en medio acuoso, que permite la desagregación de los complejos lignina-carbohidrato, alterando las propiedades físicas de la fibra y facilitando la extracción de celulosa amorfa y hemicelulosas, además de obtener un pequeño porcentaje de oligo- y monosacáridos provenientes de la hidrólisis de estos polímeros. También, una pequeña proporción de la lignina es degradada en estas condiciones, causando la presencia de una baja concentración de compuestos hidroxifenólicos. Al final de la autohidrólisis, la fracción soluble de hemicelulosas (licor) es separada del residuo sólido, compuesto principalmente por celulosa cristalina y lignina. El desarrollo de mi tesis doctoral propone que este licor rico en hemicelulosas sea sometido a un tratamiento de hidrólisis empleando catalizadores ácidos, con el objetivo de obtener los azúcares monoméricos que componen los polímeros. Estos catalizadores sólidos deben poseer sitios ácidos fuertes de Brønsted, por lo que se han desarrollado sólidos carbonosos modificados para otorgarle la acidez necesaria y comparados con una resina sulfonada comercial. Se ha obtenido licores con distintos contenidos de xilosa, debido a las diferentes propiedades de los materiales empleados. En todos los casos, estos licores purificados por medio de neutralización a pH=6 y filtración para eliminar impurezas, son empleados para la síntesis de xilitol por hidrogenación de la xilosa. Para esta reacción se emplean catalizadores metálicos soportados, que permiten obtener 80 % de conversión de xilosa con 100% de selectividad a xilitol. Se estudia la estabilidad de los diferentes catalizadores metálicos frente al leaching o lixiviado metálico. Carrera: Doctorado en Ingeniería Tipo de beca: Doctoral Año de inicio de beca: 2017 Año de finalización de beca: 2022 Organismo: CONICET Apellido, Nombre del Director/a/e: Santori, Gerardo F. Apellido, Nombre del Codirector/a/e: Nichio, Nora N. Tipo de investigación: Básica Facultad de Ingeniería Centro de Investigación y Desarrollo en Ciencias Aplicadas |
description |
Los materiales lignocelulósicos constituyen uno de los residuos más abundantes de la biomasa y han ganado gran interés en los últimos años, dado que su uso como materia prima en biorrefinerías podría dar origen a la obtención no solo de combustibles y energía, sino productos de alto valor agregado. En particular, el bagazo de caña de azúcar presenta alto contenido de xilanos, por lo que tiene un enorme potencial para su uso en la industria. El 97% del total de la producción de caña de azúcar de Argentina, se centra en las provincias de Tucumán, Jujuy y Salta, distribuyéndose el resto entre Santa Fe y Misiones. En el año 2017, según datos del Ministerio de Hacienda, Argentina produjo el 1,2% del total mundial de caña de azúcar, lo que representa una producción de alrededor de 19 millones de toneladas. Aproximadamente el 30% de la caña de azúcar se transforma en bagazo, que está compuesto por celulosa (35-43%), hemicelulosa (25-32%), lignina (21-23%), y compuestos orgánicos e inorgánicos solubles en pequeña proporción, llamados extractivos (2-11%). Esta complejidad estructural hace que sean necesarios pretratamientos para poder extraer los componentes principales. En primer lugar, se lleva a cabo un pretratamiento de autohidrólisis, en medio acuoso, que permite la desagregación de los complejos lignina-carbohidrato, alterando las propiedades físicas de la fibra y facilitando la extracción de celulosa amorfa y hemicelulosas, además de obtener un pequeño porcentaje de oligo- y monosacáridos provenientes de la hidrólisis de estos polímeros. También, una pequeña proporción de la lignina es degradada en estas condiciones, causando la presencia de una baja concentración de compuestos hidroxifenólicos. Al final de la autohidrólisis, la fracción soluble de hemicelulosas (licor) es separada del residuo sólido, compuesto principalmente por celulosa cristalina y lignina. El desarrollo de mi tesis doctoral propone que este licor rico en hemicelulosas sea sometido a un tratamiento de hidrólisis empleando catalizadores ácidos, con el objetivo de obtener los azúcares monoméricos que componen los polímeros. Estos catalizadores sólidos deben poseer sitios ácidos fuertes de Brønsted, por lo que se han desarrollado sólidos carbonosos modificados para otorgarle la acidez necesaria y comparados con una resina sulfonada comercial. Se ha obtenido licores con distintos contenidos de xilosa, debido a las diferentes propiedades de los materiales empleados. En todos los casos, estos licores purificados por medio de neutralización a pH=6 y filtración para eliminar impurezas, son empleados para la síntesis de xilitol por hidrogenación de la xilosa. Para esta reacción se emplean catalizadores metálicos soportados, que permiten obtener 80 % de conversión de xilosa con 100% de selectividad a xilitol. Se estudia la estabilidad de los diferentes catalizadores metálicos frente al leaching o lixiviado metálico. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-11-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/114045 |
url |
http://sedici.unlp.edu.ar/handle/10915/114045 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://congresos.unlp.edu.ar/ebec2020/julieta-lucia-cerioni |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
image/jpeg |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616143776514048 |
score |
13.070432 |