Procesamiento de señales de radar en presencia de clutter dinámico

Autores
Pascual, Juan Pablo
Año de publicación
2014
Idioma
español castellano
Tipo de recurso
tesis doctoral
Estado
versión aceptada
Colaborador/a o director/a de tesis
von Ellenrieder, Nicolás
Muravchik, Carlos Horacio
Caranti, Giorgio
Vaquila, Isidoro
Cousseau, Juan E.
Descripción
El radar es un sistema de sensado remoto que utiliza técnicas de procesamiento estadístico de señales para obtener información de la señal recibida. Los radares convencionales son sistemas activos que operan transmitiendo energía en forma de ondas electromagnéticas y recibiendo las señales reflejadas por el entorno y el objeto iluminado. Una de las dificultades a tener en cuenta en los sistemas de radar es que la señal de interés suele encontrarse obscurecida por las reflexiones producidas por el ambiente, fenómeno al que se denomina {\it clutter}. Generalmente, y dependiendo de la aplicación, el clutter es considerado una fuente de interferencia y perturbaciones cuyos efectos se deben eliminar o reducir. Por lo tanto, en vista de su naturaleza aleatoria, es importante el desarrollo de métodos estadísticos de procesamiento de señales para poder detectar objetivos y estimar sus propiedades en situaciones de clutter intenso y dinámico. Para obtener algoritmos eficientes, es fundamental utilizar modelos realistas de las señales recibidas por el radar. Estos modelos deben enfatizar las diferencias entre el objeto de interés y el clutter. De esta forma, los métodos de procesamiento de señal son usados para separar el objetivo del clutter y reducir el efecto degradante de este último. En esta tesis se aborda el problema de detección en presencia de clutter dinámico para aplicaciones de radar. En especial se desarrollan modelos que contemplan las variaciones del escenario y utilizan la historia del clutter para mejorar su caracterización en el instante actual y las predicciones a tiempo futuro. La primera alternativa considera el clutter como una serie temporal que presenta heteroscedasticidad condicional autorregresiva generalizada, utilizando los denominados procesos GARCH. Este tipo de procesos poseen la característica de ser impulsivos, pero presentan la desventaja de que no cuentan con una expresión explícita para su función densidad de probabilidad. Por este motivo, se analizan alternativas para estimar sus parámetros y determinar la calidad de la estimación. Asimismo, se adaptan los test de hipótesis usuales para deducir un esquema de detección basado en el modelo GARCH. Con el fin de incorporar información de múltiples pulsos en los instantes de decisión, se extiende el modelo anterior combinando un proceso GARCH en dos dimensiones (GARCH-2D) con un proceso autorregresivo (AR) y se deriva el detector correspondiente para este modelo de clutter. La parte GARCH-2D del modelo preserva la propiedad impulsiva de los procesos GARCH y la AR en las innovaciones permite modelar la correlación pulso a pulso que existe en los datos. En ambos casos se deducen expresiones para las probabilidades de falsa alarma y, dada su complejidad matemática, la probabilidad de detección se evalúa por medio de simulaciones numéricas. Además, se analiza la sensibilidad del desempeño de los detectores ante errores en la estimación de sus parámetros. A pesar de que no resultan de tasa de falsa alarma constante, muestran un comportamiento robusto en situaciones prácticas. Por último, el desempeño de los detectores propuestos es comparado con algoritmos de detección existentes en la literatura utilizando mediciones reales de clutter marítimo. Los resultados muestran que presentan un mejor desempeño respecto de los demás detectores, es decir, una probabilidad de detección mayor para una tasa de falsa alarma menor, independientemente de la relación señal a clutter. Finalmente se estudia el problema de estimación secuencial de los parámetros de los procesos GARCH. Si bien de los análisis de sensibilidad se concluye que en los detectores porpuestos no es necesaria una actualización frecuente de los mismos, su estimación es la etapa de mayor costo computacional en los esquemas de detección propuestos. Siguiendo el enfoque de estimación Bayesiano se deduce un estimador lineal de mínimo error cuadrático medio para la varianza condicional de los procesos GARCH, que es el parámetro del cual depende el estadístico de los detectores desarrollados. La deducción del algoritmo es análoga a la del filtro de Kalman, pero en este caso las matrices del sistema son aleatorias.
Doctor en Ingeniería
Universidad Nacional de La Plata
Facultad de Ingeniería
Materia
Ingeniería
radar
Electrónica
procesamiento de señales
Fenómenos Electromagnéticos
clutter
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/44032

id SEDICI_6389c878ef1fcde5fd412d9bf4164830
oai_identifier_str oai:sedici.unlp.edu.ar:10915/44032
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Procesamiento de señales de radar en presencia de clutter dinámicoPascual, Juan PabloIngenieríaradarElectrónicaprocesamiento de señalesFenómenos ElectromagnéticosclutterEl radar es un sistema de sensado remoto que utiliza técnicas de procesamiento estadístico de señales para obtener información de la señal recibida. Los radares convencionales son sistemas activos que operan transmitiendo energía en forma de ondas electromagnéticas y recibiendo las señales reflejadas por el entorno y el objeto iluminado. Una de las dificultades a tener en cuenta en los sistemas de radar es que la señal de interés suele encontrarse obscurecida por las reflexiones producidas por el ambiente, fenómeno al que se denomina {\it clutter}. Generalmente, y dependiendo de la aplicación, el clutter es considerado una fuente de interferencia y perturbaciones cuyos efectos se deben eliminar o reducir. Por lo tanto, en vista de su naturaleza aleatoria, es importante el desarrollo de métodos estadísticos de procesamiento de señales para poder detectar objetivos y estimar sus propiedades en situaciones de clutter intenso y dinámico. Para obtener algoritmos eficientes, es fundamental utilizar modelos realistas de las señales recibidas por el radar. Estos modelos deben enfatizar las diferencias entre el objeto de interés y el clutter. De esta forma, los métodos de procesamiento de señal son usados para separar el objetivo del clutter y reducir el efecto degradante de este último. En esta tesis se aborda el problema de detección en presencia de clutter dinámico para aplicaciones de radar. En especial se desarrollan modelos que contemplan las variaciones del escenario y utilizan la historia del clutter para mejorar su caracterización en el instante actual y las predicciones a tiempo futuro. La primera alternativa considera el clutter como una serie temporal que presenta heteroscedasticidad condicional autorregresiva generalizada, utilizando los denominados procesos GARCH. Este tipo de procesos poseen la característica de ser impulsivos, pero presentan la desventaja de que no cuentan con una expresión explícita para su función densidad de probabilidad. Por este motivo, se analizan alternativas para estimar sus parámetros y determinar la calidad de la estimación. Asimismo, se adaptan los test de hipótesis usuales para deducir un esquema de detección basado en el modelo GARCH. Con el fin de incorporar información de múltiples pulsos en los instantes de decisión, se extiende el modelo anterior combinando un proceso GARCH en dos dimensiones (GARCH-2D) con un proceso autorregresivo (AR) y se deriva el detector correspondiente para este modelo de clutter. La parte GARCH-2D del modelo preserva la propiedad impulsiva de los procesos GARCH y la AR en las innovaciones permite modelar la correlación pulso a pulso que existe en los datos. En ambos casos se deducen expresiones para las probabilidades de falsa alarma y, dada su complejidad matemática, la probabilidad de detección se evalúa por medio de simulaciones numéricas. Además, se analiza la sensibilidad del desempeño de los detectores ante errores en la estimación de sus parámetros. A pesar de que no resultan de tasa de falsa alarma constante, muestran un comportamiento robusto en situaciones prácticas. Por último, el desempeño de los detectores propuestos es comparado con algoritmos de detección existentes en la literatura utilizando mediciones reales de clutter marítimo. Los resultados muestran que presentan un mejor desempeño respecto de los demás detectores, es decir, una probabilidad de detección mayor para una tasa de falsa alarma menor, independientemente de la relación señal a clutter. Finalmente se estudia el problema de estimación secuencial de los parámetros de los procesos GARCH. Si bien de los análisis de sensibilidad se concluye que en los detectores porpuestos no es necesaria una actualización frecuente de los mismos, su estimación es la etapa de mayor costo computacional en los esquemas de detección propuestos. Siguiendo el enfoque de estimación Bayesiano se deduce un estimador lineal de mínimo error cuadrático medio para la varianza condicional de los procesos GARCH, que es el parámetro del cual depende el estadístico de los detectores desarrollados. La deducción del algoritmo es análoga a la del filtro de Kalman, pero en este caso las matrices del sistema son aleatorias.Doctor en IngenieríaUniversidad Nacional de La PlataFacultad de Ingenieríavon Ellenrieder, NicolásMuravchik, Carlos HoracioCaranti, GiorgioVaquila, IsidoroCousseau, Juan E.2014-12-19info:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionTesis de doctoradohttp://purl.org/coar/resource_type/c_db06info:ar-repo/semantics/tesisDoctoralapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/44032https://doi.org/10.35537/10915/44032spainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar/Creative Commons Attribution 2.5 Argentina (CC BY 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:34:39Zoai:sedici.unlp.edu.ar:10915/44032Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:34:39.777SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Procesamiento de señales de radar en presencia de clutter dinámico
title Procesamiento de señales de radar en presencia de clutter dinámico
spellingShingle Procesamiento de señales de radar en presencia de clutter dinámico
Pascual, Juan Pablo
Ingeniería
radar
Electrónica
procesamiento de señales
Fenómenos Electromagnéticos
clutter
title_short Procesamiento de señales de radar en presencia de clutter dinámico
title_full Procesamiento de señales de radar en presencia de clutter dinámico
title_fullStr Procesamiento de señales de radar en presencia de clutter dinámico
title_full_unstemmed Procesamiento de señales de radar en presencia de clutter dinámico
title_sort Procesamiento de señales de radar en presencia de clutter dinámico
dc.creator.none.fl_str_mv Pascual, Juan Pablo
author Pascual, Juan Pablo
author_facet Pascual, Juan Pablo
author_role author
dc.contributor.none.fl_str_mv von Ellenrieder, Nicolás
Muravchik, Carlos Horacio
Caranti, Giorgio
Vaquila, Isidoro
Cousseau, Juan E.
dc.subject.none.fl_str_mv Ingeniería
radar
Electrónica
procesamiento de señales
Fenómenos Electromagnéticos
clutter
topic Ingeniería
radar
Electrónica
procesamiento de señales
Fenómenos Electromagnéticos
clutter
dc.description.none.fl_txt_mv El radar es un sistema de sensado remoto que utiliza técnicas de procesamiento estadístico de señales para obtener información de la señal recibida. Los radares convencionales son sistemas activos que operan transmitiendo energía en forma de ondas electromagnéticas y recibiendo las señales reflejadas por el entorno y el objeto iluminado. Una de las dificultades a tener en cuenta en los sistemas de radar es que la señal de interés suele encontrarse obscurecida por las reflexiones producidas por el ambiente, fenómeno al que se denomina {\it clutter}. Generalmente, y dependiendo de la aplicación, el clutter es considerado una fuente de interferencia y perturbaciones cuyos efectos se deben eliminar o reducir. Por lo tanto, en vista de su naturaleza aleatoria, es importante el desarrollo de métodos estadísticos de procesamiento de señales para poder detectar objetivos y estimar sus propiedades en situaciones de clutter intenso y dinámico. Para obtener algoritmos eficientes, es fundamental utilizar modelos realistas de las señales recibidas por el radar. Estos modelos deben enfatizar las diferencias entre el objeto de interés y el clutter. De esta forma, los métodos de procesamiento de señal son usados para separar el objetivo del clutter y reducir el efecto degradante de este último. En esta tesis se aborda el problema de detección en presencia de clutter dinámico para aplicaciones de radar. En especial se desarrollan modelos que contemplan las variaciones del escenario y utilizan la historia del clutter para mejorar su caracterización en el instante actual y las predicciones a tiempo futuro. La primera alternativa considera el clutter como una serie temporal que presenta heteroscedasticidad condicional autorregresiva generalizada, utilizando los denominados procesos GARCH. Este tipo de procesos poseen la característica de ser impulsivos, pero presentan la desventaja de que no cuentan con una expresión explícita para su función densidad de probabilidad. Por este motivo, se analizan alternativas para estimar sus parámetros y determinar la calidad de la estimación. Asimismo, se adaptan los test de hipótesis usuales para deducir un esquema de detección basado en el modelo GARCH. Con el fin de incorporar información de múltiples pulsos en los instantes de decisión, se extiende el modelo anterior combinando un proceso GARCH en dos dimensiones (GARCH-2D) con un proceso autorregresivo (AR) y se deriva el detector correspondiente para este modelo de clutter. La parte GARCH-2D del modelo preserva la propiedad impulsiva de los procesos GARCH y la AR en las innovaciones permite modelar la correlación pulso a pulso que existe en los datos. En ambos casos se deducen expresiones para las probabilidades de falsa alarma y, dada su complejidad matemática, la probabilidad de detección se evalúa por medio de simulaciones numéricas. Además, se analiza la sensibilidad del desempeño de los detectores ante errores en la estimación de sus parámetros. A pesar de que no resultan de tasa de falsa alarma constante, muestran un comportamiento robusto en situaciones prácticas. Por último, el desempeño de los detectores propuestos es comparado con algoritmos de detección existentes en la literatura utilizando mediciones reales de clutter marítimo. Los resultados muestran que presentan un mejor desempeño respecto de los demás detectores, es decir, una probabilidad de detección mayor para una tasa de falsa alarma menor, independientemente de la relación señal a clutter. Finalmente se estudia el problema de estimación secuencial de los parámetros de los procesos GARCH. Si bien de los análisis de sensibilidad se concluye que en los detectores porpuestos no es necesaria una actualización frecuente de los mismos, su estimación es la etapa de mayor costo computacional en los esquemas de detección propuestos. Siguiendo el enfoque de estimación Bayesiano se deduce un estimador lineal de mínimo error cuadrático medio para la varianza condicional de los procesos GARCH, que es el parámetro del cual depende el estadístico de los detectores desarrollados. La deducción del algoritmo es análoga a la del filtro de Kalman, pero en este caso las matrices del sistema son aleatorias.
Doctor en Ingeniería
Universidad Nacional de La Plata
Facultad de Ingeniería
description El radar es un sistema de sensado remoto que utiliza técnicas de procesamiento estadístico de señales para obtener información de la señal recibida. Los radares convencionales son sistemas activos que operan transmitiendo energía en forma de ondas electromagnéticas y recibiendo las señales reflejadas por el entorno y el objeto iluminado. Una de las dificultades a tener en cuenta en los sistemas de radar es que la señal de interés suele encontrarse obscurecida por las reflexiones producidas por el ambiente, fenómeno al que se denomina {\it clutter}. Generalmente, y dependiendo de la aplicación, el clutter es considerado una fuente de interferencia y perturbaciones cuyos efectos se deben eliminar o reducir. Por lo tanto, en vista de su naturaleza aleatoria, es importante el desarrollo de métodos estadísticos de procesamiento de señales para poder detectar objetivos y estimar sus propiedades en situaciones de clutter intenso y dinámico. Para obtener algoritmos eficientes, es fundamental utilizar modelos realistas de las señales recibidas por el radar. Estos modelos deben enfatizar las diferencias entre el objeto de interés y el clutter. De esta forma, los métodos de procesamiento de señal son usados para separar el objetivo del clutter y reducir el efecto degradante de este último. En esta tesis se aborda el problema de detección en presencia de clutter dinámico para aplicaciones de radar. En especial se desarrollan modelos que contemplan las variaciones del escenario y utilizan la historia del clutter para mejorar su caracterización en el instante actual y las predicciones a tiempo futuro. La primera alternativa considera el clutter como una serie temporal que presenta heteroscedasticidad condicional autorregresiva generalizada, utilizando los denominados procesos GARCH. Este tipo de procesos poseen la característica de ser impulsivos, pero presentan la desventaja de que no cuentan con una expresión explícita para su función densidad de probabilidad. Por este motivo, se analizan alternativas para estimar sus parámetros y determinar la calidad de la estimación. Asimismo, se adaptan los test de hipótesis usuales para deducir un esquema de detección basado en el modelo GARCH. Con el fin de incorporar información de múltiples pulsos en los instantes de decisión, se extiende el modelo anterior combinando un proceso GARCH en dos dimensiones (GARCH-2D) con un proceso autorregresivo (AR) y se deriva el detector correspondiente para este modelo de clutter. La parte GARCH-2D del modelo preserva la propiedad impulsiva de los procesos GARCH y la AR en las innovaciones permite modelar la correlación pulso a pulso que existe en los datos. En ambos casos se deducen expresiones para las probabilidades de falsa alarma y, dada su complejidad matemática, la probabilidad de detección se evalúa por medio de simulaciones numéricas. Además, se analiza la sensibilidad del desempeño de los detectores ante errores en la estimación de sus parámetros. A pesar de que no resultan de tasa de falsa alarma constante, muestran un comportamiento robusto en situaciones prácticas. Por último, el desempeño de los detectores propuestos es comparado con algoritmos de detección existentes en la literatura utilizando mediciones reales de clutter marítimo. Los resultados muestran que presentan un mejor desempeño respecto de los demás detectores, es decir, una probabilidad de detección mayor para una tasa de falsa alarma menor, independientemente de la relación señal a clutter. Finalmente se estudia el problema de estimación secuencial de los parámetros de los procesos GARCH. Si bien de los análisis de sensibilidad se concluye que en los detectores porpuestos no es necesaria una actualización frecuente de los mismos, su estimación es la etapa de mayor costo computacional en los esquemas de detección propuestos. Siguiendo el enfoque de estimación Bayesiano se deduce un estimador lineal de mínimo error cuadrático medio para la varianza condicional de los procesos GARCH, que es el parámetro del cual depende el estadístico de los detectores desarrollados. La deducción del algoritmo es análoga a la del filtro de Kalman, pero en este caso las matrices del sistema son aleatorias.
publishDate 2014
dc.date.none.fl_str_mv 2014-12-19
dc.type.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
info:eu-repo/semantics/acceptedVersion
Tesis de doctorado
http://purl.org/coar/resource_type/c_db06
info:ar-repo/semantics/tesisDoctoral
format doctoralThesis
status_str acceptedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/44032
https://doi.org/10.35537/10915/44032
url http://sedici.unlp.edu.ar/handle/10915/44032
https://doi.org/10.35537/10915/44032
dc.language.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar/
Creative Commons Attribution 2.5 Argentina (CC BY 2.5)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar/
Creative Commons Attribution 2.5 Argentina (CC BY 2.5)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1842260197363417088
score 13.13397