Non-linear Kalman filters comparison for generalised autoregressive conditional heteroscedastic clutter parameter estimation
- Autores
- Pascual, Juan Pablo; Von Ellenrieder, Nicolás; Areta, Javier Alberto; Muravchik, Carlos Horacio
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this work, the authors analyse the estimation of the generalised autoregressive conditional heteroscedastic (GARCH) process conditional variance based on three non-linear filtering approaches: extended Kalman filter (EKF), unscented Kalman filter and cubature Kalman filter. The authors present a state model for a GARCH process and derive an EKF including second-order non-linear terms for simultaneous estimation of state and parameters. Using synthetic data, the authors evaluate the consistency and the correlation of the innovations for the three filters, by means of numerical simulations. The authors also study the performance of smoothed versions of the non-linear Kalman filters using real clutter data in comparison with a conventional quasi-maximum likelihood estimation method for the GARCH process coefficients. The authors show that with all methods the process coefficients estimates are of the same order and the resulting conditional variances are commensurable. However, the non-linear Kalman filters greatly reduce the computational load. These kind of filters could be used for the radar detector based on a GARCH clutter model that uses an adaptive threshold that demands the conditional variance at each decision instant.
Fil: Pascual, Juan Pablo. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina
Fil: Von Ellenrieder, Nicolás. McGill University; Canadá
Fil: Areta, Javier Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Universidad Nacional de Río Negro; Argentina
Fil: Muravchik, Carlos Horacio. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales. Universidad Nacional de La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales; Argentina - Materia
-
RADAR
CLUTTER MODELING
KALMAN FILTER
GARCH PROCESS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/124866
Ver los metadatos del registro completo
id |
CONICETDig_39a47fdda5ce891d8f671914ecc23e5a |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/124866 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Non-linear Kalman filters comparison for generalised autoregressive conditional heteroscedastic clutter parameter estimationPascual, Juan PabloVon Ellenrieder, NicolásAreta, Javier AlbertoMuravchik, Carlos HoracioRADARCLUTTER MODELINGKALMAN FILTERGARCH PROCESShttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2In this work, the authors analyse the estimation of the generalised autoregressive conditional heteroscedastic (GARCH) process conditional variance based on three non-linear filtering approaches: extended Kalman filter (EKF), unscented Kalman filter and cubature Kalman filter. The authors present a state model for a GARCH process and derive an EKF including second-order non-linear terms for simultaneous estimation of state and parameters. Using synthetic data, the authors evaluate the consistency and the correlation of the innovations for the three filters, by means of numerical simulations. The authors also study the performance of smoothed versions of the non-linear Kalman filters using real clutter data in comparison with a conventional quasi-maximum likelihood estimation method for the GARCH process coefficients. The authors show that with all methods the process coefficients estimates are of the same order and the resulting conditional variances are commensurable. However, the non-linear Kalman filters greatly reduce the computational load. These kind of filters could be used for the radar detector based on a GARCH clutter model that uses an adaptive threshold that demands the conditional variance at each decision instant.Fil: Pascual, Juan Pablo. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Von Ellenrieder, Nicolás. McGill University; CanadáFil: Areta, Javier Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Universidad Nacional de Río Negro; ArgentinaFil: Muravchik, Carlos Horacio. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales. Universidad Nacional de La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales; ArgentinaInstitution of Engineering and Technology2019-08-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/124866Pascual, Juan Pablo; Von Ellenrieder, Nicolás; Areta, Javier Alberto; Muravchik, Carlos Horacio; Non-linear Kalman filters comparison for generalised autoregressive conditional heteroscedastic clutter parameter estimation; Institution of Engineering and Technology; Iet Signal Processing; 13; 6; 1-8-2019; 606-6131751-96751751-9683CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://digital-library.theiet.org/content/journals/10.1049/iet-spr.2018.5400info:eu-repo/semantics/altIdentifier/doi/10.1049/iet-spr.2018.5400info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:44:49Zoai:ri.conicet.gov.ar:11336/124866instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:44:49.651CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Non-linear Kalman filters comparison for generalised autoregressive conditional heteroscedastic clutter parameter estimation |
title |
Non-linear Kalman filters comparison for generalised autoregressive conditional heteroscedastic clutter parameter estimation |
spellingShingle |
Non-linear Kalman filters comparison for generalised autoregressive conditional heteroscedastic clutter parameter estimation Pascual, Juan Pablo RADAR CLUTTER MODELING KALMAN FILTER GARCH PROCESS |
title_short |
Non-linear Kalman filters comparison for generalised autoregressive conditional heteroscedastic clutter parameter estimation |
title_full |
Non-linear Kalman filters comparison for generalised autoregressive conditional heteroscedastic clutter parameter estimation |
title_fullStr |
Non-linear Kalman filters comparison for generalised autoregressive conditional heteroscedastic clutter parameter estimation |
title_full_unstemmed |
Non-linear Kalman filters comparison for generalised autoregressive conditional heteroscedastic clutter parameter estimation |
title_sort |
Non-linear Kalman filters comparison for generalised autoregressive conditional heteroscedastic clutter parameter estimation |
dc.creator.none.fl_str_mv |
Pascual, Juan Pablo Von Ellenrieder, Nicolás Areta, Javier Alberto Muravchik, Carlos Horacio |
author |
Pascual, Juan Pablo |
author_facet |
Pascual, Juan Pablo Von Ellenrieder, Nicolás Areta, Javier Alberto Muravchik, Carlos Horacio |
author_role |
author |
author2 |
Von Ellenrieder, Nicolás Areta, Javier Alberto Muravchik, Carlos Horacio |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
RADAR CLUTTER MODELING KALMAN FILTER GARCH PROCESS |
topic |
RADAR CLUTTER MODELING KALMAN FILTER GARCH PROCESS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
In this work, the authors analyse the estimation of the generalised autoregressive conditional heteroscedastic (GARCH) process conditional variance based on three non-linear filtering approaches: extended Kalman filter (EKF), unscented Kalman filter and cubature Kalman filter. The authors present a state model for a GARCH process and derive an EKF including second-order non-linear terms for simultaneous estimation of state and parameters. Using synthetic data, the authors evaluate the consistency and the correlation of the innovations for the three filters, by means of numerical simulations. The authors also study the performance of smoothed versions of the non-linear Kalman filters using real clutter data in comparison with a conventional quasi-maximum likelihood estimation method for the GARCH process coefficients. The authors show that with all methods the process coefficients estimates are of the same order and the resulting conditional variances are commensurable. However, the non-linear Kalman filters greatly reduce the computational load. These kind of filters could be used for the radar detector based on a GARCH clutter model that uses an adaptive threshold that demands the conditional variance at each decision instant. Fil: Pascual, Juan Pablo. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina Fil: Von Ellenrieder, Nicolás. McGill University; Canadá Fil: Areta, Javier Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Universidad Nacional de Río Negro; Argentina Fil: Muravchik, Carlos Horacio. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales. Universidad Nacional de La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales; Argentina |
description |
In this work, the authors analyse the estimation of the generalised autoregressive conditional heteroscedastic (GARCH) process conditional variance based on three non-linear filtering approaches: extended Kalman filter (EKF), unscented Kalman filter and cubature Kalman filter. The authors present a state model for a GARCH process and derive an EKF including second-order non-linear terms for simultaneous estimation of state and parameters. Using synthetic data, the authors evaluate the consistency and the correlation of the innovations for the three filters, by means of numerical simulations. The authors also study the performance of smoothed versions of the non-linear Kalman filters using real clutter data in comparison with a conventional quasi-maximum likelihood estimation method for the GARCH process coefficients. The authors show that with all methods the process coefficients estimates are of the same order and the resulting conditional variances are commensurable. However, the non-linear Kalman filters greatly reduce the computational load. These kind of filters could be used for the radar detector based on a GARCH clutter model that uses an adaptive threshold that demands the conditional variance at each decision instant. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-08-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/124866 Pascual, Juan Pablo; Von Ellenrieder, Nicolás; Areta, Javier Alberto; Muravchik, Carlos Horacio; Non-linear Kalman filters comparison for generalised autoregressive conditional heteroscedastic clutter parameter estimation; Institution of Engineering and Technology; Iet Signal Processing; 13; 6; 1-8-2019; 606-613 1751-9675 1751-9683 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/124866 |
identifier_str_mv |
Pascual, Juan Pablo; Von Ellenrieder, Nicolás; Areta, Javier Alberto; Muravchik, Carlos Horacio; Non-linear Kalman filters comparison for generalised autoregressive conditional heteroscedastic clutter parameter estimation; Institution of Engineering and Technology; Iet Signal Processing; 13; 6; 1-8-2019; 606-613 1751-9675 1751-9683 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://digital-library.theiet.org/content/journals/10.1049/iet-spr.2018.5400 info:eu-repo/semantics/altIdentifier/doi/10.1049/iet-spr.2018.5400 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Institution of Engineering and Technology |
publisher.none.fl_str_mv |
Institution of Engineering and Technology |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268691012517888 |
score |
13.13397 |