Reversing uncertainty sampling to improve active learning schemes

Autores
Cardellino, Cristian; Alonso i Alemany, Laura
Año de publicación
2015
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
Active learning provides promising methods to optimize the cost of manually annotating a dataset. However, practitioners in many areas do not massively resort to such methods because they present technical difficulties and do not provide a guarantee of good performance, especially in skewed distributions with scarcely populated minority classes and an undefined, catch-all majority class, which are very common in human-related phenomena like natural language. In this paper we present a comparison of the simplest active learning technique, pool-based uncertainty sampling, and its opposite, which we call reversed uncertainty sampling. We show that both obtain results comparable to the random, arguing for a more insightful approach to active learning.
Sociedad Argentina de Informática e Investigación Operativa (SADIO)
Materia
Ciencias Informáticas
active learning
pool-based uncertainty sampling
Aprendizaje
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-sa/3.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/52131

id SEDICI_5e2ddb99fd47bf54fcd567598d6e3402
oai_identifier_str oai:sedici.unlp.edu.ar:10915/52131
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Reversing uncertainty sampling to improve active learning schemesCardellino, CristianAlonso i Alemany, LauraCiencias Informáticasactive learningpool-based uncertainty samplingAprendizajeActive learning provides promising methods to optimize the cost of manually annotating a dataset. However, practitioners in many areas do not massively resort to such methods because they present technical difficulties and do not provide a guarantee of good performance, especially in skewed distributions with scarcely populated minority classes and an undefined, catch-all majority class, which are very common in human-related phenomena like natural language. In this paper we present a comparison of the simplest active learning technique, pool-based uncertainty sampling, and its opposite, which we call reversed uncertainty sampling. We show that both obtain results comparable to the random, arguing for a more insightful approach to active learning.Sociedad Argentina de Informática e Investigación Operativa (SADIO)2015info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf184-191http://sedici.unlp.edu.ar/handle/10915/52131enginfo:eu-repo/semantics/altIdentifier/url/http://44jaiio.sadio.org.ar/sites/default/files/asai184-191.pdfinfo:eu-repo/semantics/altIdentifier/issn/2451-7585info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-sa/3.0/Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:04:34Zoai:sedici.unlp.edu.ar:10915/52131Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:04:35.16SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Reversing uncertainty sampling to improve active learning schemes
title Reversing uncertainty sampling to improve active learning schemes
spellingShingle Reversing uncertainty sampling to improve active learning schemes
Cardellino, Cristian
Ciencias Informáticas
active learning
pool-based uncertainty sampling
Aprendizaje
title_short Reversing uncertainty sampling to improve active learning schemes
title_full Reversing uncertainty sampling to improve active learning schemes
title_fullStr Reversing uncertainty sampling to improve active learning schemes
title_full_unstemmed Reversing uncertainty sampling to improve active learning schemes
title_sort Reversing uncertainty sampling to improve active learning schemes
dc.creator.none.fl_str_mv Cardellino, Cristian
Alonso i Alemany, Laura
author Cardellino, Cristian
author_facet Cardellino, Cristian
Alonso i Alemany, Laura
author_role author
author2 Alonso i Alemany, Laura
author2_role author
dc.subject.none.fl_str_mv Ciencias Informáticas
active learning
pool-based uncertainty sampling
Aprendizaje
topic Ciencias Informáticas
active learning
pool-based uncertainty sampling
Aprendizaje
dc.description.none.fl_txt_mv Active learning provides promising methods to optimize the cost of manually annotating a dataset. However, practitioners in many areas do not massively resort to such methods because they present technical difficulties and do not provide a guarantee of good performance, especially in skewed distributions with scarcely populated minority classes and an undefined, catch-all majority class, which are very common in human-related phenomena like natural language. In this paper we present a comparison of the simplest active learning technique, pool-based uncertainty sampling, and its opposite, which we call reversed uncertainty sampling. We show that both obtain results comparable to the random, arguing for a more insightful approach to active learning.
Sociedad Argentina de Informática e Investigación Operativa (SADIO)
description Active learning provides promising methods to optimize the cost of manually annotating a dataset. However, practitioners in many areas do not massively resort to such methods because they present technical difficulties and do not provide a guarantee of good performance, especially in skewed distributions with scarcely populated minority classes and an undefined, catch-all majority class, which are very common in human-related phenomena like natural language. In this paper we present a comparison of the simplest active learning technique, pool-based uncertainty sampling, and its opposite, which we call reversed uncertainty sampling. We show that both obtain results comparable to the random, arguing for a more insightful approach to active learning.
publishDate 2015
dc.date.none.fl_str_mv 2015
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/52131
url http://sedici.unlp.edu.ar/handle/10915/52131
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://44jaiio.sadio.org.ar/sites/default/files/asai184-191.pdf
info:eu-repo/semantics/altIdentifier/issn/2451-7585
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-sa/3.0/
Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-sa/3.0/
Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)
dc.format.none.fl_str_mv application/pdf
184-191
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844615914519003136
score 13.070432