Reversing uncertainty sampling to improve active learning schemes
- Autores
- Cardellino, Cristian; Alonso i Alemany, Laura
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Active learning provides promising methods to optimize the cost of manually annotating a dataset. However, practitioners in many areas do not massively resort to such methods because they present technical difficulties and do not provide a guarantee of good performance, especially in skewed distributions with scarcely populated minority classes and an undefined, catch-all majority class, which are very common in human-related phenomena like natural language. In this paper we present a comparison of the simplest active learning technique, pool-based uncertainty sampling, and its opposite, which we call reversed uncertainty sampling. We show that both obtain results comparable to the random, arguing for a more insightful approach to active learning.
Sociedad Argentina de Informática e Investigación Operativa (SADIO) - Materia
-
Ciencias Informáticas
active learning
pool-based uncertainty sampling
Aprendizaje - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-sa/3.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/52131
Ver los metadatos del registro completo
id |
SEDICI_5e2ddb99fd47bf54fcd567598d6e3402 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/52131 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Reversing uncertainty sampling to improve active learning schemesCardellino, CristianAlonso i Alemany, LauraCiencias Informáticasactive learningpool-based uncertainty samplingAprendizajeActive learning provides promising methods to optimize the cost of manually annotating a dataset. However, practitioners in many areas do not massively resort to such methods because they present technical difficulties and do not provide a guarantee of good performance, especially in skewed distributions with scarcely populated minority classes and an undefined, catch-all majority class, which are very common in human-related phenomena like natural language. In this paper we present a comparison of the simplest active learning technique, pool-based uncertainty sampling, and its opposite, which we call reversed uncertainty sampling. We show that both obtain results comparable to the random, arguing for a more insightful approach to active learning.Sociedad Argentina de Informática e Investigación Operativa (SADIO)2015info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf184-191http://sedici.unlp.edu.ar/handle/10915/52131enginfo:eu-repo/semantics/altIdentifier/url/http://44jaiio.sadio.org.ar/sites/default/files/asai184-191.pdfinfo:eu-repo/semantics/altIdentifier/issn/2451-7585info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-sa/3.0/Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:04:34Zoai:sedici.unlp.edu.ar:10915/52131Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:04:35.16SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Reversing uncertainty sampling to improve active learning schemes |
title |
Reversing uncertainty sampling to improve active learning schemes |
spellingShingle |
Reversing uncertainty sampling to improve active learning schemes Cardellino, Cristian Ciencias Informáticas active learning pool-based uncertainty sampling Aprendizaje |
title_short |
Reversing uncertainty sampling to improve active learning schemes |
title_full |
Reversing uncertainty sampling to improve active learning schemes |
title_fullStr |
Reversing uncertainty sampling to improve active learning schemes |
title_full_unstemmed |
Reversing uncertainty sampling to improve active learning schemes |
title_sort |
Reversing uncertainty sampling to improve active learning schemes |
dc.creator.none.fl_str_mv |
Cardellino, Cristian Alonso i Alemany, Laura |
author |
Cardellino, Cristian |
author_facet |
Cardellino, Cristian Alonso i Alemany, Laura |
author_role |
author |
author2 |
Alonso i Alemany, Laura |
author2_role |
author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas active learning pool-based uncertainty sampling Aprendizaje |
topic |
Ciencias Informáticas active learning pool-based uncertainty sampling Aprendizaje |
dc.description.none.fl_txt_mv |
Active learning provides promising methods to optimize the cost of manually annotating a dataset. However, practitioners in many areas do not massively resort to such methods because they present technical difficulties and do not provide a guarantee of good performance, especially in skewed distributions with scarcely populated minority classes and an undefined, catch-all majority class, which are very common in human-related phenomena like natural language. In this paper we present a comparison of the simplest active learning technique, pool-based uncertainty sampling, and its opposite, which we call reversed uncertainty sampling. We show that both obtain results comparable to the random, arguing for a more insightful approach to active learning. Sociedad Argentina de Informática e Investigación Operativa (SADIO) |
description |
Active learning provides promising methods to optimize the cost of manually annotating a dataset. However, practitioners in many areas do not massively resort to such methods because they present technical difficulties and do not provide a guarantee of good performance, especially in skewed distributions with scarcely populated minority classes and an undefined, catch-all majority class, which are very common in human-related phenomena like natural language. In this paper we present a comparison of the simplest active learning technique, pool-based uncertainty sampling, and its opposite, which we call reversed uncertainty sampling. We show that both obtain results comparable to the random, arguing for a more insightful approach to active learning. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/52131 |
url |
http://sedici.unlp.edu.ar/handle/10915/52131 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://44jaiio.sadio.org.ar/sites/default/files/asai184-191.pdf info:eu-repo/semantics/altIdentifier/issn/2451-7585 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-sa/3.0/ Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-sa/3.0/ Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0) |
dc.format.none.fl_str_mv |
application/pdf 184-191 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844615914519003136 |
score |
13.070432 |