New strategies for flexibility analysis and design under uncertainty
- Autores
- Raspanti, Claudia Gabriela; Bandoni, Jose Alberto; Biegler, L.
- Año de publicación
- 2000
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Process flexibility and design under uncertainty have been researched extensively in the literature. Problem formulations for flexibility include nested optimization problems and these can often be refined by substituting the optimality conditions for these nested problems. However, these reformulations are highly constrained and can be expensive to solve. In this paper we extend algorithms to solve these reformulated NLP problem under uncertainty by introducing two contributions to this approach. These are the use of a Constraint Aggregation function (KS function) and Smoothing Functions. We begin with basic properties of KS function. Next, we review a class of parametric smooth functions, used to replace the complementarity conditions of the KKT conditions with a well-behaved, smoothed nonlinear equality constraint. In this paper we apply the previous strategies to two specific problems: i) the'worst case algorithm', that assesses design under uncertainty and, ii) the flexibility index and feasibility test formulations. In the first case, two new algorithms are derived, one of them being single level optimization problem. Next using similar ideas, both flexibility index and feasibility test are reformulated leading to a single non linear programming problem instead of a mixed integer non linear programming one. The new formulations are demonstrated on five different example problems where a CPU time reduction of more than 70 and 80% is demonstrated.
Fil: Raspanti, Claudia Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
Fil: Bandoni, Jose Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
Fil: Biegler, L.. Carnegie Mellon University; Estados Unidos - Materia
-
Uncertainty
Design - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/101422
Ver los metadatos del registro completo
id |
CONICETDig_a2c4b2b82b2a43f853761563fea9895b |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/101422 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
New strategies for flexibility analysis and design under uncertaintyRaspanti, Claudia GabrielaBandoni, Jose AlbertoBiegler, L.UncertaintyDesignhttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2Process flexibility and design under uncertainty have been researched extensively in the literature. Problem formulations for flexibility include nested optimization problems and these can often be refined by substituting the optimality conditions for these nested problems. However, these reformulations are highly constrained and can be expensive to solve. In this paper we extend algorithms to solve these reformulated NLP problem under uncertainty by introducing two contributions to this approach. These are the use of a Constraint Aggregation function (KS function) and Smoothing Functions. We begin with basic properties of KS function. Next, we review a class of parametric smooth functions, used to replace the complementarity conditions of the KKT conditions with a well-behaved, smoothed nonlinear equality constraint. In this paper we apply the previous strategies to two specific problems: i) the'worst case algorithm', that assesses design under uncertainty and, ii) the flexibility index and feasibility test formulations. In the first case, two new algorithms are derived, one of them being single level optimization problem. Next using similar ideas, both flexibility index and feasibility test are reformulated leading to a single non linear programming problem instead of a mixed integer non linear programming one. The new formulations are demonstrated on five different example problems where a CPU time reduction of more than 70 and 80% is demonstrated.Fil: Raspanti, Claudia Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; ArgentinaFil: Bandoni, Jose Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; ArgentinaFil: Biegler, L.. Carnegie Mellon University; Estados UnidosPergamon-Elsevier Science Ltd2000-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/101422Raspanti, Claudia Gabriela; Bandoni, Jose Alberto; Biegler, L.; New strategies for flexibility analysis and design under uncertainty; Pergamon-Elsevier Science Ltd; Computers and Chemical Engineering; 24; 9-10; 10-2000; 2193-22090098-1354CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0098135400005913info:eu-repo/semantics/altIdentifier/doi/10.1016/S0098-1354(00)00591-3info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:45:52Zoai:ri.conicet.gov.ar:11336/101422instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:45:52.701CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
New strategies for flexibility analysis and design under uncertainty |
title |
New strategies for flexibility analysis and design under uncertainty |
spellingShingle |
New strategies for flexibility analysis and design under uncertainty Raspanti, Claudia Gabriela Uncertainty Design |
title_short |
New strategies for flexibility analysis and design under uncertainty |
title_full |
New strategies for flexibility analysis and design under uncertainty |
title_fullStr |
New strategies for flexibility analysis and design under uncertainty |
title_full_unstemmed |
New strategies for flexibility analysis and design under uncertainty |
title_sort |
New strategies for flexibility analysis and design under uncertainty |
dc.creator.none.fl_str_mv |
Raspanti, Claudia Gabriela Bandoni, Jose Alberto Biegler, L. |
author |
Raspanti, Claudia Gabriela |
author_facet |
Raspanti, Claudia Gabriela Bandoni, Jose Alberto Biegler, L. |
author_role |
author |
author2 |
Bandoni, Jose Alberto Biegler, L. |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Uncertainty Design |
topic |
Uncertainty Design |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.4 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Process flexibility and design under uncertainty have been researched extensively in the literature. Problem formulations for flexibility include nested optimization problems and these can often be refined by substituting the optimality conditions for these nested problems. However, these reformulations are highly constrained and can be expensive to solve. In this paper we extend algorithms to solve these reformulated NLP problem under uncertainty by introducing two contributions to this approach. These are the use of a Constraint Aggregation function (KS function) and Smoothing Functions. We begin with basic properties of KS function. Next, we review a class of parametric smooth functions, used to replace the complementarity conditions of the KKT conditions with a well-behaved, smoothed nonlinear equality constraint. In this paper we apply the previous strategies to two specific problems: i) the'worst case algorithm', that assesses design under uncertainty and, ii) the flexibility index and feasibility test formulations. In the first case, two new algorithms are derived, one of them being single level optimization problem. Next using similar ideas, both flexibility index and feasibility test are reformulated leading to a single non linear programming problem instead of a mixed integer non linear programming one. The new formulations are demonstrated on five different example problems where a CPU time reduction of more than 70 and 80% is demonstrated. Fil: Raspanti, Claudia Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina Fil: Bandoni, Jose Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina Fil: Biegler, L.. Carnegie Mellon University; Estados Unidos |
description |
Process flexibility and design under uncertainty have been researched extensively in the literature. Problem formulations for flexibility include nested optimization problems and these can often be refined by substituting the optimality conditions for these nested problems. However, these reformulations are highly constrained and can be expensive to solve. In this paper we extend algorithms to solve these reformulated NLP problem under uncertainty by introducing two contributions to this approach. These are the use of a Constraint Aggregation function (KS function) and Smoothing Functions. We begin with basic properties of KS function. Next, we review a class of parametric smooth functions, used to replace the complementarity conditions of the KKT conditions with a well-behaved, smoothed nonlinear equality constraint. In this paper we apply the previous strategies to two specific problems: i) the'worst case algorithm', that assesses design under uncertainty and, ii) the flexibility index and feasibility test formulations. In the first case, two new algorithms are derived, one of them being single level optimization problem. Next using similar ideas, both flexibility index and feasibility test are reformulated leading to a single non linear programming problem instead of a mixed integer non linear programming one. The new formulations are demonstrated on five different example problems where a CPU time reduction of more than 70 and 80% is demonstrated. |
publishDate |
2000 |
dc.date.none.fl_str_mv |
2000-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/101422 Raspanti, Claudia Gabriela; Bandoni, Jose Alberto; Biegler, L.; New strategies for flexibility analysis and design under uncertainty; Pergamon-Elsevier Science Ltd; Computers and Chemical Engineering; 24; 9-10; 10-2000; 2193-2209 0098-1354 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/101422 |
identifier_str_mv |
Raspanti, Claudia Gabriela; Bandoni, Jose Alberto; Biegler, L.; New strategies for flexibility analysis and design under uncertainty; Pergamon-Elsevier Science Ltd; Computers and Chemical Engineering; 24; 9-10; 10-2000; 2193-2209 0098-1354 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0098135400005913 info:eu-repo/semantics/altIdentifier/doi/10.1016/S0098-1354(00)00591-3 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268759222386688 |
score |
13.13397 |