Combinatorial functional and differential equations applied to differential posets
- Autores
- Menni, Matías
- Año de publicación
- 2008
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We give combinatorial proofs of the primary results developed by Stanley for deriving enumerative properties of differential posets. In order to do this we extend the theory of combinatorial differential equations developed by Leroux and Viennot.
Facultad de Ciencias Exactas
Laboratorio de Investigación y Formación en Informática Avanzada - Materia
-
Ciencias Exactas
Combinatorial differential equations
Differential posets
Joyal species
Y-graphs - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
.jpg)
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/83024
Ver los metadatos del registro completo
| id |
SEDICI_575fdd6e242dd02d94ad03d723096d52 |
|---|---|
| oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/83024 |
| network_acronym_str |
SEDICI |
| repository_id_str |
1329 |
| network_name_str |
SEDICI (UNLP) |
| spelling |
Combinatorial functional and differential equations applied to differential posetsMenni, MatíasCiencias ExactasCombinatorial differential equationsDifferential posetsJoyal speciesY-graphsWe give combinatorial proofs of the primary results developed by Stanley for deriving enumerative properties of differential posets. In order to do this we extend the theory of combinatorial differential equations developed by Leroux and Viennot.Facultad de Ciencias ExactasLaboratorio de Investigación y Formación en Informática Avanzada2008info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf1864-1888http://sedici.unlp.edu.ar/handle/10915/83024enginfo:eu-repo/semantics/altIdentifier/issn/0012-365Xinfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.disc.2007.04.035info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-22T16:56:32Zoai:sedici.unlp.edu.ar:10915/83024Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-22 16:56:32.344SEDICI (UNLP) - Universidad Nacional de La Platafalse |
| dc.title.none.fl_str_mv |
Combinatorial functional and differential equations applied to differential posets |
| title |
Combinatorial functional and differential equations applied to differential posets |
| spellingShingle |
Combinatorial functional and differential equations applied to differential posets Menni, Matías Ciencias Exactas Combinatorial differential equations Differential posets Joyal species Y-graphs |
| title_short |
Combinatorial functional and differential equations applied to differential posets |
| title_full |
Combinatorial functional and differential equations applied to differential posets |
| title_fullStr |
Combinatorial functional and differential equations applied to differential posets |
| title_full_unstemmed |
Combinatorial functional and differential equations applied to differential posets |
| title_sort |
Combinatorial functional and differential equations applied to differential posets |
| dc.creator.none.fl_str_mv |
Menni, Matías |
| author |
Menni, Matías |
| author_facet |
Menni, Matías |
| author_role |
author |
| dc.subject.none.fl_str_mv |
Ciencias Exactas Combinatorial differential equations Differential posets Joyal species Y-graphs |
| topic |
Ciencias Exactas Combinatorial differential equations Differential posets Joyal species Y-graphs |
| dc.description.none.fl_txt_mv |
We give combinatorial proofs of the primary results developed by Stanley for deriving enumerative properties of differential posets. In order to do this we extend the theory of combinatorial differential equations developed by Leroux and Viennot. Facultad de Ciencias Exactas Laboratorio de Investigación y Formación en Informática Avanzada |
| description |
We give combinatorial proofs of the primary results developed by Stanley for deriving enumerative properties of differential posets. In order to do this we extend the theory of combinatorial differential equations developed by Leroux and Viennot. |
| publishDate |
2008 |
| dc.date.none.fl_str_mv |
2008 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/83024 |
| url |
http://sedici.unlp.edu.ar/handle/10915/83024 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/0012-365X info:eu-repo/semantics/altIdentifier/doi/10.1016/j.disc.2007.04.035 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
| dc.format.none.fl_str_mv |
application/pdf 1864-1888 |
| dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
| reponame_str |
SEDICI (UNLP) |
| collection |
SEDICI (UNLP) |
| instname_str |
Universidad Nacional de La Plata |
| instacron_str |
UNLP |
| institution |
UNLP |
| repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
| repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
| _version_ |
1846783171666903040 |
| score |
12.982451 |