Isochronous bifurcations in second-order delay differential equations
- Autores
- Bel, Andrea Liliana; Reartes, Walter
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this article we consider a special type of second-order delay differential equations. More precisely, we take an equation of a conservative mechanical system in one dimension with an added term that is a function of the difference between the value of the position at time t minus the position at the delayed time t−τ. For this system, we show that, under certain conditions of non-degeneration and of convergence of the periodic solutions obtained by the Homotopy Analysis Method, bifurcation branches appearing in a neighbourhood of Hopf bifurcation due to the delay are isochronous; i.e., all the emerging cycles have the same frequency.
Fil: Bel, Andrea Liliana. Universidad Nacional del Sur; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Reartes, Walter. Universidad Nacional del Sur; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
DELAY DIFFERENTIAL EQUATIONS
HOPF BIFURCATION
ISOCHRONOUS CYCLES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/31285
Ver los metadatos del registro completo
| id |
CONICETDig_9270e17c3297c135c6f23eda1ab6ccb3 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/31285 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Isochronous bifurcations in second-order delay differential equationsBel, Andrea LilianaReartes, WalterDELAY DIFFERENTIAL EQUATIONSHOPF BIFURCATIONISOCHRONOUS CYCLEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this article we consider a special type of second-order delay differential equations. More precisely, we take an equation of a conservative mechanical system in one dimension with an added term that is a function of the difference between the value of the position at time t minus the position at the delayed time t−τ. For this system, we show that, under certain conditions of non-degeneration and of convergence of the periodic solutions obtained by the Homotopy Analysis Method, bifurcation branches appearing in a neighbourhood of Hopf bifurcation due to the delay are isochronous; i.e., all the emerging cycles have the same frequency.Fil: Bel, Andrea Liliana. Universidad Nacional del Sur; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Reartes, Walter. Universidad Nacional del Sur; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaTexas State University2014-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/31285Reartes, Walter; Bel, Andrea Liliana; Isochronous bifurcations in second-order delay differential equations; Texas State University; Electronic Journal of Differential Equations; 2014; 162; 6-2014; 1-121072-6691CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://ejde.math.txstate.edu/Volumes/2014/162/abstr.htmlinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-12T09:42:42Zoai:ri.conicet.gov.ar:11336/31285instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-12 09:42:42.925CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Isochronous bifurcations in second-order delay differential equations |
| title |
Isochronous bifurcations in second-order delay differential equations |
| spellingShingle |
Isochronous bifurcations in second-order delay differential equations Bel, Andrea Liliana DELAY DIFFERENTIAL EQUATIONS HOPF BIFURCATION ISOCHRONOUS CYCLES |
| title_short |
Isochronous bifurcations in second-order delay differential equations |
| title_full |
Isochronous bifurcations in second-order delay differential equations |
| title_fullStr |
Isochronous bifurcations in second-order delay differential equations |
| title_full_unstemmed |
Isochronous bifurcations in second-order delay differential equations |
| title_sort |
Isochronous bifurcations in second-order delay differential equations |
| dc.creator.none.fl_str_mv |
Bel, Andrea Liliana Reartes, Walter |
| author |
Bel, Andrea Liliana |
| author_facet |
Bel, Andrea Liliana Reartes, Walter |
| author_role |
author |
| author2 |
Reartes, Walter |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
DELAY DIFFERENTIAL EQUATIONS HOPF BIFURCATION ISOCHRONOUS CYCLES |
| topic |
DELAY DIFFERENTIAL EQUATIONS HOPF BIFURCATION ISOCHRONOUS CYCLES |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
In this article we consider a special type of second-order delay differential equations. More precisely, we take an equation of a conservative mechanical system in one dimension with an added term that is a function of the difference between the value of the position at time t minus the position at the delayed time t−τ. For this system, we show that, under certain conditions of non-degeneration and of convergence of the periodic solutions obtained by the Homotopy Analysis Method, bifurcation branches appearing in a neighbourhood of Hopf bifurcation due to the delay are isochronous; i.e., all the emerging cycles have the same frequency. Fil: Bel, Andrea Liliana. Universidad Nacional del Sur; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Reartes, Walter. Universidad Nacional del Sur; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
| description |
In this article we consider a special type of second-order delay differential equations. More precisely, we take an equation of a conservative mechanical system in one dimension with an added term that is a function of the difference between the value of the position at time t minus the position at the delayed time t−τ. For this system, we show that, under certain conditions of non-degeneration and of convergence of the periodic solutions obtained by the Homotopy Analysis Method, bifurcation branches appearing in a neighbourhood of Hopf bifurcation due to the delay are isochronous; i.e., all the emerging cycles have the same frequency. |
| publishDate |
2014 |
| dc.date.none.fl_str_mv |
2014-06 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/31285 Reartes, Walter; Bel, Andrea Liliana; Isochronous bifurcations in second-order delay differential equations; Texas State University; Electronic Journal of Differential Equations; 2014; 162; 6-2014; 1-12 1072-6691 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/31285 |
| identifier_str_mv |
Reartes, Walter; Bel, Andrea Liliana; Isochronous bifurcations in second-order delay differential equations; Texas State University; Electronic Journal of Differential Equations; 2014; 162; 6-2014; 1-12 1072-6691 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://ejde.math.txstate.edu/Volumes/2014/162/abstr.html |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Texas State University |
| publisher.none.fl_str_mv |
Texas State University |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1848597662043996160 |
| score |
12.976206 |