Análisis Simbólico de Datos: una potente herramienta para Big Data
- Autores
- Mallea, Adriana; Herrera, Myriam; Lund, María Inés
- Año de publicación
- 2018
- Idioma
- español castellano
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Los datos simbólicos, introducidos por Edwin Diday en los ochenta, se ocupan del análisis de datos con variabilidad intrínseca que debería ser tenida en cuenta. En minería de datos, análisis multivariado de datos y estadística clásica los elementos analizados generalmente son entidades individuales, para las cuales se graba un valor individual de cada variable. Por ejemplo, individuos descriptos por edad, salario, nivel educativo, etc. Pero cuando los elementos de interés son clases o grupos de algún tipo, como los ciudadanos que viven en una ciudad determinada, modelos de autos en lugar de vehículos específicos, etc.; hay variabilidad inherente en los datos. Reducir esta variabilidad mediante medidas de tendencia central, tales como media aritmética, mediana o moda, lleva obviamente a una pérdida de información importante. El análisis de datos simbólicos proporciona un marco que permite representar datos con variabilidad, usando nuevos tipos de variables. Los datos simbólicos se pueden representar usando los arreglos usuales en forma de matrices, pero en los cuales los elementos de cada celda no son valores numéricos reales individuales, sino conjuntos finitos de valores, intervalos o, de forma mías general, distribuciones.
Facultad de Informática - Materia
-
Ciencias Informáticas
objeto simbólico, variables simbólicas
Data mining - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
.jpg)
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/69945
Ver los metadatos del registro completo
| id |
SEDICI_5737f73fde32cee9ff7c24d32dfaa93e |
|---|---|
| oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/69945 |
| network_acronym_str |
SEDICI |
| repository_id_str |
1329 |
| network_name_str |
SEDICI (UNLP) |
| spelling |
Análisis Simbólico de Datos: una potente herramienta para Big DataMallea, AdrianaHerrera, MyriamLund, María InésCiencias Informáticasobjeto simbólico, variables simbólicasData miningLos datos simbólicos, introducidos por Edwin Diday en los ochenta, se ocupan del análisis de datos con variabilidad intrínseca que debería ser tenida en cuenta. En minería de datos, análisis multivariado de datos y estadística clásica los elementos analizados generalmente son entidades individuales, para las cuales se graba un valor individual de cada variable. Por ejemplo, individuos descriptos por edad, salario, nivel educativo, etc. Pero cuando los elementos de interés son clases o grupos de algún tipo, como los ciudadanos que viven en una ciudad determinada, modelos de autos en lugar de vehículos específicos, etc.; hay variabilidad inherente en los datos. Reducir esta variabilidad mediante medidas de tendencia central, tales como media aritmética, mediana o moda, lleva obviamente a una pérdida de información importante. El análisis de datos simbólicos proporciona un marco que permite representar datos con variabilidad, usando nuevos tipos de variables. Los datos simbólicos se pueden representar usando los arreglos usuales en forma de matrices, pero en los cuales los elementos de cada celda no son valores numéricos reales individuales, sino conjuntos finitos de valores, intervalos o, de forma mías general, distribuciones.Facultad de Informática2018-06info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf81-89http://sedici.unlp.edu.ar/handle/10915/69945spainfo:eu-repo/semantics/altIdentifier/isbn/978-950-34-1659-4info:eu-repo/semantics/reference/hdl/10915/69464info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-22T16:52:01Zoai:sedici.unlp.edu.ar:10915/69945Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-22 16:52:02.185SEDICI (UNLP) - Universidad Nacional de La Platafalse |
| dc.title.none.fl_str_mv |
Análisis Simbólico de Datos: una potente herramienta para Big Data |
| title |
Análisis Simbólico de Datos: una potente herramienta para Big Data |
| spellingShingle |
Análisis Simbólico de Datos: una potente herramienta para Big Data Mallea, Adriana Ciencias Informáticas objeto simbólico, variables simbólicas Data mining |
| title_short |
Análisis Simbólico de Datos: una potente herramienta para Big Data |
| title_full |
Análisis Simbólico de Datos: una potente herramienta para Big Data |
| title_fullStr |
Análisis Simbólico de Datos: una potente herramienta para Big Data |
| title_full_unstemmed |
Análisis Simbólico de Datos: una potente herramienta para Big Data |
| title_sort |
Análisis Simbólico de Datos: una potente herramienta para Big Data |
| dc.creator.none.fl_str_mv |
Mallea, Adriana Herrera, Myriam Lund, María Inés |
| author |
Mallea, Adriana |
| author_facet |
Mallea, Adriana Herrera, Myriam Lund, María Inés |
| author_role |
author |
| author2 |
Herrera, Myriam Lund, María Inés |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
Ciencias Informáticas objeto simbólico, variables simbólicas Data mining |
| topic |
Ciencias Informáticas objeto simbólico, variables simbólicas Data mining |
| dc.description.none.fl_txt_mv |
Los datos simbólicos, introducidos por Edwin Diday en los ochenta, se ocupan del análisis de datos con variabilidad intrínseca que debería ser tenida en cuenta. En minería de datos, análisis multivariado de datos y estadística clásica los elementos analizados generalmente son entidades individuales, para las cuales se graba un valor individual de cada variable. Por ejemplo, individuos descriptos por edad, salario, nivel educativo, etc. Pero cuando los elementos de interés son clases o grupos de algún tipo, como los ciudadanos que viven en una ciudad determinada, modelos de autos en lugar de vehículos específicos, etc.; hay variabilidad inherente en los datos. Reducir esta variabilidad mediante medidas de tendencia central, tales como media aritmética, mediana o moda, lleva obviamente a una pérdida de información importante. El análisis de datos simbólicos proporciona un marco que permite representar datos con variabilidad, usando nuevos tipos de variables. Los datos simbólicos se pueden representar usando los arreglos usuales en forma de matrices, pero en los cuales los elementos de cada celda no son valores numéricos reales individuales, sino conjuntos finitos de valores, intervalos o, de forma mías general, distribuciones. Facultad de Informática |
| description |
Los datos simbólicos, introducidos por Edwin Diday en los ochenta, se ocupan del análisis de datos con variabilidad intrínseca que debería ser tenida en cuenta. En minería de datos, análisis multivariado de datos y estadística clásica los elementos analizados generalmente son entidades individuales, para las cuales se graba un valor individual de cada variable. Por ejemplo, individuos descriptos por edad, salario, nivel educativo, etc. Pero cuando los elementos de interés son clases o grupos de algún tipo, como los ciudadanos que viven en una ciudad determinada, modelos de autos en lugar de vehículos específicos, etc.; hay variabilidad inherente en los datos. Reducir esta variabilidad mediante medidas de tendencia central, tales como media aritmética, mediana o moda, lleva obviamente a una pérdida de información importante. El análisis de datos simbólicos proporciona un marco que permite representar datos con variabilidad, usando nuevos tipos de variables. Los datos simbólicos se pueden representar usando los arreglos usuales en forma de matrices, pero en los cuales los elementos de cada celda no son valores numéricos reales individuales, sino conjuntos finitos de valores, intervalos o, de forma mías general, distribuciones. |
| publishDate |
2018 |
| dc.date.none.fl_str_mv |
2018-06 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
| format |
conferenceObject |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/69945 |
| url |
http://sedici.unlp.edu.ar/handle/10915/69945 |
| dc.language.none.fl_str_mv |
spa |
| language |
spa |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/isbn/978-950-34-1659-4 info:eu-repo/semantics/reference/hdl/10915/69464 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
| dc.format.none.fl_str_mv |
application/pdf 81-89 |
| dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
| reponame_str |
SEDICI (UNLP) |
| collection |
SEDICI (UNLP) |
| instname_str |
Universidad Nacional de La Plata |
| instacron_str |
UNLP |
| institution |
UNLP |
| repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
| repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
| _version_ |
1846783085747634176 |
| score |
12.982451 |