Análisis Simbólico de Datos: una potente herramienta para Big Data

Autores
Mallea, Adriana; Herrera, Myriam; Lund, María Inés
Año de publicación
2018
Idioma
español castellano
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
Los datos simbólicos, introducidos por Edwin Diday en los ochenta, se ocupan del análisis de datos con variabilidad intrínseca que debería ser tenida en cuenta. En minería de datos, análisis multivariado de datos y estadística clásica los elementos analizados generalmente son entidades individuales, para las cuales se graba un valor individual de cada variable. Por ejemplo, individuos descriptos por edad, salario, nivel educativo, etc. Pero cuando los elementos de interés son clases o grupos de algún tipo, como los ciudadanos que viven en una ciudad determinada, modelos de autos en lugar de vehículos específicos, etc.; hay variabilidad inherente en los datos. Reducir esta variabilidad mediante medidas de tendencia central, tales como media aritmética, mediana o moda, lleva obviamente a una pérdida de información importante. El análisis de datos simbólicos proporciona un marco que permite representar datos con variabilidad, usando nuevos tipos de variables. Los datos simbólicos se pueden representar usando los arreglos usuales en forma de matrices, pero en los cuales los elementos de cada celda no son valores numéricos reales individuales, sino conjuntos finitos de valores, intervalos o, de forma mías general, distribuciones.
Facultad de Informática
Materia
Ciencias Informáticas
objeto simbólico, variables simbólicas
Data mining
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/69945

id SEDICI_5737f73fde32cee9ff7c24d32dfaa93e
oai_identifier_str oai:sedici.unlp.edu.ar:10915/69945
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Análisis Simbólico de Datos: una potente herramienta para Big DataMallea, AdrianaHerrera, MyriamLund, María InésCiencias Informáticasobjeto simbólico, variables simbólicasData miningLos datos simbólicos, introducidos por Edwin Diday en los ochenta, se ocupan del análisis de datos con variabilidad intrínseca que debería ser tenida en cuenta. En minería de datos, análisis multivariado de datos y estadística clásica los elementos analizados generalmente son entidades individuales, para las cuales se graba un valor individual de cada variable. Por ejemplo, individuos descriptos por edad, salario, nivel educativo, etc. Pero cuando los elementos de interés son clases o grupos de algún tipo, como los ciudadanos que viven en una ciudad determinada, modelos de autos en lugar de vehículos específicos, etc.; hay variabilidad inherente en los datos. Reducir esta variabilidad mediante medidas de tendencia central, tales como media aritmética, mediana o moda, lleva obviamente a una pérdida de información importante. El análisis de datos simbólicos proporciona un marco que permite representar datos con variabilidad, usando nuevos tipos de variables. Los datos simbólicos se pueden representar usando los arreglos usuales en forma de matrices, pero en los cuales los elementos de cada celda no son valores numéricos reales individuales, sino conjuntos finitos de valores, intervalos o, de forma mías general, distribuciones.Facultad de Informática2018-06info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf81-89http://sedici.unlp.edu.ar/handle/10915/69945spainfo:eu-repo/semantics/altIdentifier/isbn/978-950-34-1659-4info:eu-repo/semantics/reference/hdl/10915/69464info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-22T16:52:01Zoai:sedici.unlp.edu.ar:10915/69945Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-22 16:52:02.185SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Análisis Simbólico de Datos: una potente herramienta para Big Data
title Análisis Simbólico de Datos: una potente herramienta para Big Data
spellingShingle Análisis Simbólico de Datos: una potente herramienta para Big Data
Mallea, Adriana
Ciencias Informáticas
objeto simbólico, variables simbólicas
Data mining
title_short Análisis Simbólico de Datos: una potente herramienta para Big Data
title_full Análisis Simbólico de Datos: una potente herramienta para Big Data
title_fullStr Análisis Simbólico de Datos: una potente herramienta para Big Data
title_full_unstemmed Análisis Simbólico de Datos: una potente herramienta para Big Data
title_sort Análisis Simbólico de Datos: una potente herramienta para Big Data
dc.creator.none.fl_str_mv Mallea, Adriana
Herrera, Myriam
Lund, María Inés
author Mallea, Adriana
author_facet Mallea, Adriana
Herrera, Myriam
Lund, María Inés
author_role author
author2 Herrera, Myriam
Lund, María Inés
author2_role author
author
dc.subject.none.fl_str_mv Ciencias Informáticas
objeto simbólico, variables simbólicas
Data mining
topic Ciencias Informáticas
objeto simbólico, variables simbólicas
Data mining
dc.description.none.fl_txt_mv Los datos simbólicos, introducidos por Edwin Diday en los ochenta, se ocupan del análisis de datos con variabilidad intrínseca que debería ser tenida en cuenta. En minería de datos, análisis multivariado de datos y estadística clásica los elementos analizados generalmente son entidades individuales, para las cuales se graba un valor individual de cada variable. Por ejemplo, individuos descriptos por edad, salario, nivel educativo, etc. Pero cuando los elementos de interés son clases o grupos de algún tipo, como los ciudadanos que viven en una ciudad determinada, modelos de autos en lugar de vehículos específicos, etc.; hay variabilidad inherente en los datos. Reducir esta variabilidad mediante medidas de tendencia central, tales como media aritmética, mediana o moda, lleva obviamente a una pérdida de información importante. El análisis de datos simbólicos proporciona un marco que permite representar datos con variabilidad, usando nuevos tipos de variables. Los datos simbólicos se pueden representar usando los arreglos usuales en forma de matrices, pero en los cuales los elementos de cada celda no son valores numéricos reales individuales, sino conjuntos finitos de valores, intervalos o, de forma mías general, distribuciones.
Facultad de Informática
description Los datos simbólicos, introducidos por Edwin Diday en los ochenta, se ocupan del análisis de datos con variabilidad intrínseca que debería ser tenida en cuenta. En minería de datos, análisis multivariado de datos y estadística clásica los elementos analizados generalmente son entidades individuales, para las cuales se graba un valor individual de cada variable. Por ejemplo, individuos descriptos por edad, salario, nivel educativo, etc. Pero cuando los elementos de interés son clases o grupos de algún tipo, como los ciudadanos que viven en una ciudad determinada, modelos de autos en lugar de vehículos específicos, etc.; hay variabilidad inherente en los datos. Reducir esta variabilidad mediante medidas de tendencia central, tales como media aritmética, mediana o moda, lleva obviamente a una pérdida de información importante. El análisis de datos simbólicos proporciona un marco que permite representar datos con variabilidad, usando nuevos tipos de variables. Los datos simbólicos se pueden representar usando los arreglos usuales en forma de matrices, pero en los cuales los elementos de cada celda no son valores numéricos reales individuales, sino conjuntos finitos de valores, intervalos o, de forma mías general, distribuciones.
publishDate 2018
dc.date.none.fl_str_mv 2018-06
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/69945
url http://sedici.unlp.edu.ar/handle/10915/69945
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/isbn/978-950-34-1659-4
info:eu-repo/semantics/reference/hdl/10915/69464
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
81-89
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1846783085747634176
score 12.982451