An efficient evolutionary algorithm for the deadline problem in project management

Autores
Galnare, Matías; Nesmachnow, Sergio
Año de publicación
2012
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
This article presents an efficient evolutionary algorithm applied to the deadline scheduling in project management, a NP-hard problem with major relevance in software engineering and scheduling activities. The evolutionary algorithm has been specifically designed to provide accurate and efficient solutions, by using operators that allow realistic problem instances to be solved. Efficient numerical results are reported in the experimental analysis performed on standard problem instances. The experimental results demonstrate that the proposed evolutionary algorithm is able to outperform one of the best well-known deterministic techniques for the problem in reduced execution times, specially on highly complex instances.
Sociedad Argentina de Informática e Investigación Operativa
Materia
Ciencias Informáticas
Project management
Deadline problem
Evolutionary algorithms
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/123744

id SEDICI_570a09a7b57d4e6a7fd43fdd1e7865fb
oai_identifier_str oai:sedici.unlp.edu.ar:10915/123744
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling An efficient evolutionary algorithm for the deadline problem in project managementGalnare, MatíasNesmachnow, SergioCiencias InformáticasProject managementDeadline problemEvolutionary algorithmsThis article presents an efficient evolutionary algorithm applied to the deadline scheduling in project management, a NP-hard problem with major relevance in software engineering and scheduling activities. The evolutionary algorithm has been specifically designed to provide accurate and efficient solutions, by using operators that allow realistic problem instances to be solved. Efficient numerical results are reported in the experimental analysis performed on standard problem instances. The experimental results demonstrate that the proposed evolutionary algorithm is able to outperform one of the best well-known deterministic techniques for the problem in reduced execution times, specially on highly complex instances.Sociedad Argentina de Informática e Investigación Operativa2012-08info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf165-176http://sedici.unlp.edu.ar/handle/10915/123744enginfo:eu-repo/semantics/altIdentifier/url/https://41jaiio.sadio.org.ar/sites/default/files/15_ASAI_2012.pdfinfo:eu-repo/semantics/altIdentifier/issn/1850-2784info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-22T17:10:34Zoai:sedici.unlp.edu.ar:10915/123744Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-22 17:10:34.515SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv An efficient evolutionary algorithm for the deadline problem in project management
title An efficient evolutionary algorithm for the deadline problem in project management
spellingShingle An efficient evolutionary algorithm for the deadline problem in project management
Galnare, Matías
Ciencias Informáticas
Project management
Deadline problem
Evolutionary algorithms
title_short An efficient evolutionary algorithm for the deadline problem in project management
title_full An efficient evolutionary algorithm for the deadline problem in project management
title_fullStr An efficient evolutionary algorithm for the deadline problem in project management
title_full_unstemmed An efficient evolutionary algorithm for the deadline problem in project management
title_sort An efficient evolutionary algorithm for the deadline problem in project management
dc.creator.none.fl_str_mv Galnare, Matías
Nesmachnow, Sergio
author Galnare, Matías
author_facet Galnare, Matías
Nesmachnow, Sergio
author_role author
author2 Nesmachnow, Sergio
author2_role author
dc.subject.none.fl_str_mv Ciencias Informáticas
Project management
Deadline problem
Evolutionary algorithms
topic Ciencias Informáticas
Project management
Deadline problem
Evolutionary algorithms
dc.description.none.fl_txt_mv This article presents an efficient evolutionary algorithm applied to the deadline scheduling in project management, a NP-hard problem with major relevance in software engineering and scheduling activities. The evolutionary algorithm has been specifically designed to provide accurate and efficient solutions, by using operators that allow realistic problem instances to be solved. Efficient numerical results are reported in the experimental analysis performed on standard problem instances. The experimental results demonstrate that the proposed evolutionary algorithm is able to outperform one of the best well-known deterministic techniques for the problem in reduced execution times, specially on highly complex instances.
Sociedad Argentina de Informática e Investigación Operativa
description This article presents an efficient evolutionary algorithm applied to the deadline scheduling in project management, a NP-hard problem with major relevance in software engineering and scheduling activities. The evolutionary algorithm has been specifically designed to provide accurate and efficient solutions, by using operators that allow realistic problem instances to be solved. Efficient numerical results are reported in the experimental analysis performed on standard problem instances. The experimental results demonstrate that the proposed evolutionary algorithm is able to outperform one of the best well-known deterministic techniques for the problem in reduced execution times, specially on highly complex instances.
publishDate 2012
dc.date.none.fl_str_mv 2012-08
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/123744
url http://sedici.unlp.edu.ar/handle/10915/123744
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://41jaiio.sadio.org.ar/sites/default/files/15_ASAI_2012.pdf
info:eu-repo/semantics/altIdentifier/issn/1850-2784
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
165-176
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1846783444342800384
score 12.982451