An efficient evolutionary algorithm for the deadline problem in project management
- Autores
- Galnare, Matías; Nesmachnow, Sergio
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- This article presents an efficient evolutionary algorithm applied to the deadline scheduling in project management, a NP-hard problem with major relevance in software engineering and scheduling activities. The evolutionary algorithm has been specifically designed to provide accurate and efficient solutions, by using operators that allow realistic problem instances to be solved. Efficient numerical results are reported in the experimental analysis performed on standard problem instances. The experimental results demonstrate that the proposed evolutionary algorithm is able to outperform one of the best well-known deterministic techniques for the problem in reduced execution times, specially on highly complex instances.
Sociedad Argentina de Informática e Investigación Operativa - Materia
-
Ciencias Informáticas
Project management
Deadline problem
Evolutionary algorithms - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
.jpg)
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/123744
Ver los metadatos del registro completo
| id |
SEDICI_570a09a7b57d4e6a7fd43fdd1e7865fb |
|---|---|
| oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/123744 |
| network_acronym_str |
SEDICI |
| repository_id_str |
1329 |
| network_name_str |
SEDICI (UNLP) |
| spelling |
An efficient evolutionary algorithm for the deadline problem in project managementGalnare, MatíasNesmachnow, SergioCiencias InformáticasProject managementDeadline problemEvolutionary algorithmsThis article presents an efficient evolutionary algorithm applied to the deadline scheduling in project management, a NP-hard problem with major relevance in software engineering and scheduling activities. The evolutionary algorithm has been specifically designed to provide accurate and efficient solutions, by using operators that allow realistic problem instances to be solved. Efficient numerical results are reported in the experimental analysis performed on standard problem instances. The experimental results demonstrate that the proposed evolutionary algorithm is able to outperform one of the best well-known deterministic techniques for the problem in reduced execution times, specially on highly complex instances.Sociedad Argentina de Informática e Investigación Operativa2012-08info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf165-176http://sedici.unlp.edu.ar/handle/10915/123744enginfo:eu-repo/semantics/altIdentifier/url/https://41jaiio.sadio.org.ar/sites/default/files/15_ASAI_2012.pdfinfo:eu-repo/semantics/altIdentifier/issn/1850-2784info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-22T17:10:34Zoai:sedici.unlp.edu.ar:10915/123744Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-22 17:10:34.515SEDICI (UNLP) - Universidad Nacional de La Platafalse |
| dc.title.none.fl_str_mv |
An efficient evolutionary algorithm for the deadline problem in project management |
| title |
An efficient evolutionary algorithm for the deadline problem in project management |
| spellingShingle |
An efficient evolutionary algorithm for the deadline problem in project management Galnare, Matías Ciencias Informáticas Project management Deadline problem Evolutionary algorithms |
| title_short |
An efficient evolutionary algorithm for the deadline problem in project management |
| title_full |
An efficient evolutionary algorithm for the deadline problem in project management |
| title_fullStr |
An efficient evolutionary algorithm for the deadline problem in project management |
| title_full_unstemmed |
An efficient evolutionary algorithm for the deadline problem in project management |
| title_sort |
An efficient evolutionary algorithm for the deadline problem in project management |
| dc.creator.none.fl_str_mv |
Galnare, Matías Nesmachnow, Sergio |
| author |
Galnare, Matías |
| author_facet |
Galnare, Matías Nesmachnow, Sergio |
| author_role |
author |
| author2 |
Nesmachnow, Sergio |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
Ciencias Informáticas Project management Deadline problem Evolutionary algorithms |
| topic |
Ciencias Informáticas Project management Deadline problem Evolutionary algorithms |
| dc.description.none.fl_txt_mv |
This article presents an efficient evolutionary algorithm applied to the deadline scheduling in project management, a NP-hard problem with major relevance in software engineering and scheduling activities. The evolutionary algorithm has been specifically designed to provide accurate and efficient solutions, by using operators that allow realistic problem instances to be solved. Efficient numerical results are reported in the experimental analysis performed on standard problem instances. The experimental results demonstrate that the proposed evolutionary algorithm is able to outperform one of the best well-known deterministic techniques for the problem in reduced execution times, specially on highly complex instances. Sociedad Argentina de Informática e Investigación Operativa |
| description |
This article presents an efficient evolutionary algorithm applied to the deadline scheduling in project management, a NP-hard problem with major relevance in software engineering and scheduling activities. The evolutionary algorithm has been specifically designed to provide accurate and efficient solutions, by using operators that allow realistic problem instances to be solved. Efficient numerical results are reported in the experimental analysis performed on standard problem instances. The experimental results demonstrate that the proposed evolutionary algorithm is able to outperform one of the best well-known deterministic techniques for the problem in reduced execution times, specially on highly complex instances. |
| publishDate |
2012 |
| dc.date.none.fl_str_mv |
2012-08 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
| format |
conferenceObject |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/123744 |
| url |
http://sedici.unlp.edu.ar/handle/10915/123744 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://41jaiio.sadio.org.ar/sites/default/files/15_ASAI_2012.pdf info:eu-repo/semantics/altIdentifier/issn/1850-2784 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
| dc.format.none.fl_str_mv |
application/pdf 165-176 |
| dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
| reponame_str |
SEDICI (UNLP) |
| collection |
SEDICI (UNLP) |
| instname_str |
Universidad Nacional de La Plata |
| instacron_str |
UNLP |
| institution |
UNLP |
| repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
| repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
| _version_ |
1846783444342800384 |
| score |
12.982451 |