Algoritmos genéticos para la búsqueda web basada en contextos temáticos

Autores
Cecchini, Rocío L.; Lorenzetti, Carlos M.; Maguitman, Ana Gabriela
Año de publicación
2007
Idioma
español castellano
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
El uso de contextos temáticos para seleccionar y filtrar información juega un papel fundamental en los sistemas de recuperación de información basados en la tarea del usuario (e.g., [3, 8]). Desafortunadamente, aprovechar la información del contexto durante la búsqueda en la Web es una tarea difícil. Los buscadores actuales imponen un límite a la longitud de las consultas, y aún si se permitieran consultas largas las mismas podrían volverse demasiado específicas, devolviendo muy pocos o ningún resultado. Esto dificulta la tarea de formular consultas adecuadas para describir contextos temáticos. Una alternativa para evitar este problema es el uso de ciertas sintaxis especiales provistas por algunos buscadores para la formulación de consultas. Sin embargo, aún con la flexibilidad provista por estos mecanismos de formulación de consultas, es posible que el vocabulario utilizado para describir el contexto difiera del usado para indexar los recursos relevantes. La meta de nuestro trabajo de investigación es desarrollar técnicas para refinar las consultas automáticamente y recolectar recursos relevantes para el contexto temático del usuario. En este trabajo proponemos utilizar Algoritmos Genéticos (AGs) para abordar el problema de reflejar contextos temáticos en las consultas formuladas a un buscador Web. Nuestra propuesta se basa en nuevas técnicas incrementales que permiten evolucionar consultas útiles ligadas a un contexto temático bajo análisis.
Eje: Agentes y Sistemas Inteligentes
Red de Universidades con Carreras en Informática (RedUNCI)
Materia
Ciencias Informáticas
Algoritmos Genéticos
Intelligent agents
Algorithms
Búsqueda Web
Contextos Temáticos
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/20151

id SEDICI_56e109b2d1d2a43d4d7a48dc54ef6b60
oai_identifier_str oai:sedici.unlp.edu.ar:10915/20151
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Algoritmos genéticos para la búsqueda web basada en contextos temáticosCecchini, Rocío L.Lorenzetti, Carlos M.Maguitman, Ana GabrielaCiencias InformáticasAlgoritmos GenéticosIntelligent agentsAlgorithmsBúsqueda WebContextos TemáticosEl uso de contextos temáticos para seleccionar y filtrar información juega un papel fundamental en los sistemas de recuperación de información basados en la tarea del usuario (e.g., [3, 8]). Desafortunadamente, aprovechar la información del contexto durante la búsqueda en la Web es una tarea difícil. Los buscadores actuales imponen un límite a la longitud de las consultas, y aún si se permitieran consultas largas las mismas podrían volverse demasiado específicas, devolviendo muy pocos o ningún resultado. Esto dificulta la tarea de formular consultas adecuadas para describir contextos temáticos. Una alternativa para evitar este problema es el uso de ciertas sintaxis especiales provistas por algunos buscadores para la formulación de consultas. Sin embargo, aún con la flexibilidad provista por estos mecanismos de formulación de consultas, es posible que el vocabulario utilizado para describir el contexto difiera del usado para indexar los recursos relevantes. La meta de nuestro trabajo de investigación es desarrollar técnicas para refinar las consultas automáticamente y recolectar recursos relevantes para el contexto temático del usuario. En este trabajo proponemos utilizar Algoritmos Genéticos (AGs) para abordar el problema de reflejar contextos temáticos en las consultas formuladas a un buscador Web. Nuestra propuesta se basa en nuevas técnicas incrementales que permiten evolucionar consultas útiles ligadas a un contexto temático bajo análisis.Eje: Agentes y Sistemas InteligentesRed de Universidades con Carreras en Informática (RedUNCI)2007-05info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf6-10http://sedici.unlp.edu.ar/handle/10915/20151spainfo:eu-repo/semantics/altIdentifier/isbn/978-950-763-075-0info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T10:54:10Zoai:sedici.unlp.edu.ar:10915/20151Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 10:54:10.429SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Algoritmos genéticos para la búsqueda web basada en contextos temáticos
title Algoritmos genéticos para la búsqueda web basada en contextos temáticos
spellingShingle Algoritmos genéticos para la búsqueda web basada en contextos temáticos
Cecchini, Rocío L.
Ciencias Informáticas
Algoritmos Genéticos
Intelligent agents
Algorithms
Búsqueda Web
Contextos Temáticos
title_short Algoritmos genéticos para la búsqueda web basada en contextos temáticos
title_full Algoritmos genéticos para la búsqueda web basada en contextos temáticos
title_fullStr Algoritmos genéticos para la búsqueda web basada en contextos temáticos
title_full_unstemmed Algoritmos genéticos para la búsqueda web basada en contextos temáticos
title_sort Algoritmos genéticos para la búsqueda web basada en contextos temáticos
dc.creator.none.fl_str_mv Cecchini, Rocío L.
Lorenzetti, Carlos M.
Maguitman, Ana Gabriela
author Cecchini, Rocío L.
author_facet Cecchini, Rocío L.
Lorenzetti, Carlos M.
Maguitman, Ana Gabriela
author_role author
author2 Lorenzetti, Carlos M.
Maguitman, Ana Gabriela
author2_role author
author
dc.subject.none.fl_str_mv Ciencias Informáticas
Algoritmos Genéticos
Intelligent agents
Algorithms
Búsqueda Web
Contextos Temáticos
topic Ciencias Informáticas
Algoritmos Genéticos
Intelligent agents
Algorithms
Búsqueda Web
Contextos Temáticos
dc.description.none.fl_txt_mv El uso de contextos temáticos para seleccionar y filtrar información juega un papel fundamental en los sistemas de recuperación de información basados en la tarea del usuario (e.g., [3, 8]). Desafortunadamente, aprovechar la información del contexto durante la búsqueda en la Web es una tarea difícil. Los buscadores actuales imponen un límite a la longitud de las consultas, y aún si se permitieran consultas largas las mismas podrían volverse demasiado específicas, devolviendo muy pocos o ningún resultado. Esto dificulta la tarea de formular consultas adecuadas para describir contextos temáticos. Una alternativa para evitar este problema es el uso de ciertas sintaxis especiales provistas por algunos buscadores para la formulación de consultas. Sin embargo, aún con la flexibilidad provista por estos mecanismos de formulación de consultas, es posible que el vocabulario utilizado para describir el contexto difiera del usado para indexar los recursos relevantes. La meta de nuestro trabajo de investigación es desarrollar técnicas para refinar las consultas automáticamente y recolectar recursos relevantes para el contexto temático del usuario. En este trabajo proponemos utilizar Algoritmos Genéticos (AGs) para abordar el problema de reflejar contextos temáticos en las consultas formuladas a un buscador Web. Nuestra propuesta se basa en nuevas técnicas incrementales que permiten evolucionar consultas útiles ligadas a un contexto temático bajo análisis.
Eje: Agentes y Sistemas Inteligentes
Red de Universidades con Carreras en Informática (RedUNCI)
description El uso de contextos temáticos para seleccionar y filtrar información juega un papel fundamental en los sistemas de recuperación de información basados en la tarea del usuario (e.g., [3, 8]). Desafortunadamente, aprovechar la información del contexto durante la búsqueda en la Web es una tarea difícil. Los buscadores actuales imponen un límite a la longitud de las consultas, y aún si se permitieran consultas largas las mismas podrían volverse demasiado específicas, devolviendo muy pocos o ningún resultado. Esto dificulta la tarea de formular consultas adecuadas para describir contextos temáticos. Una alternativa para evitar este problema es el uso de ciertas sintaxis especiales provistas por algunos buscadores para la formulación de consultas. Sin embargo, aún con la flexibilidad provista por estos mecanismos de formulación de consultas, es posible que el vocabulario utilizado para describir el contexto difiera del usado para indexar los recursos relevantes. La meta de nuestro trabajo de investigación es desarrollar técnicas para refinar las consultas automáticamente y recolectar recursos relevantes para el contexto temático del usuario. En este trabajo proponemos utilizar Algoritmos Genéticos (AGs) para abordar el problema de reflejar contextos temáticos en las consultas formuladas a un buscador Web. Nuestra propuesta se basa en nuevas técnicas incrementales que permiten evolucionar consultas útiles ligadas a un contexto temático bajo análisis.
publishDate 2007
dc.date.none.fl_str_mv 2007-05
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/20151
url http://sedici.unlp.edu.ar/handle/10915/20151
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/isbn/978-950-763-075-0
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
dc.format.none.fl_str_mv application/pdf
6-10
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844615798606266368
score 13.070432