Essentially orthogonal subspaces
- Autores
- Andruchow, Esteban; Corach, Gustavo
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.
Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina.
Fil: Corach, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina.
We study the set C consisting of pairs of orthogonal projectionsP,Q acting in a Hilbert space H such that PQ is a compact operator. Thesepairs have a rich geometric structure which we describe here. They are partitionedin three subclasses: C0 consists of pairs where P or Q have finite rank,C1 of pairs such that Q lies in the restricted Grassmannian (also called Sato-Grassmannian) of the polarization H = N(P)? R(P), and C?. We characterize the connected components of these classes: the components of C0 are parametrized by the rank, the components of C1 are parametrized by the Fredholm index of the pairs, and C? is connected. We show that these subsets are(non-complemented) differentiable submanifolds of B(H) x B(H). - Fuente
- Journal Of Operator Theory. Ene. 2018; 79(1): 79-100
https://www.theta.ro/jot/archive/2018-079-001/index_2018-079-001.html - Materia
-
Projections
Pairs of projections
Compact operators
Grasmann manifold - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/4.0/
- Repositorio
- Institución
- Universidad Nacional de General Sarmiento
- OAI Identificador
- oai:repositorio.ungs.edu.ar:UNGS/1808
Ver los metadatos del registro completo
id |
RIUNGS_0fb370eea99783596e27c0b520abd2d8 |
---|---|
oai_identifier_str |
oai:repositorio.ungs.edu.ar:UNGS/1808 |
network_acronym_str |
RIUNGS |
repository_id_str |
|
network_name_str |
Repositorio Institucional UNGS |
spelling |
Essentially orthogonal subspacesAndruchow, EstebanCorach, GustavoProjectionsPairs of projectionsCompact operatorsGrasmann manifoldFil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina.Fil: Corach, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina.We study the set C consisting of pairs of orthogonal projectionsP,Q acting in a Hilbert space H such that PQ is a compact operator. Thesepairs have a rich geometric structure which we describe here. They are partitionedin three subclasses: C0 consists of pairs where P or Q have finite rank,C1 of pairs such that Q lies in the restricted Grassmannian (also called Sato-Grassmannian) of the polarization H = N(P)? R(P), and C?. We characterize the connected components of these classes: the components of C0 are parametrized by the rank, the components of C1 are parametrized by the Fredholm index of the pairs, and C? is connected. We show that these subsets are(non-complemented) differentiable submanifolds of B(H) x B(H).Theta Foundation2024-12-23T13:21:48Z2024-12-23T13:21:48Z2018info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfAndruchow, E. y Corach, G. (2018). Essentially orthogonal subspaces. Journal Of Operator Theory, 79(1), 79-100.0379-4024http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/1808Journal Of Operator Theory. Ene. 2018; 79(1): 79-100https://www.theta.ro/jot/archive/2018-079-001/index_2018-079-001.htmlreponame:Repositorio Institucional UNGSinstname:Universidad Nacional de General Sarmientoeng10.7900/jot.2016dec13.2138info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/2025-09-04T11:43:11Zoai:repositorio.ungs.edu.ar:UNGS/1808instacron:UNGSInstitucionalhttp://repositorio.ungs.edu.ar:8080/Universidad públicahttps://www.ungs.edu.ar/http://repositorio.ungs.edu.ar:8080/oaiubyd@campus.ungs.edu.arArgentinaopendoar:2025-09-04 11:43:11.409Repositorio Institucional UNGS - Universidad Nacional de General Sarmientofalse |
dc.title.none.fl_str_mv |
Essentially orthogonal subspaces |
title |
Essentially orthogonal subspaces |
spellingShingle |
Essentially orthogonal subspaces Andruchow, Esteban Projections Pairs of projections Compact operators Grasmann manifold |
title_short |
Essentially orthogonal subspaces |
title_full |
Essentially orthogonal subspaces |
title_fullStr |
Essentially orthogonal subspaces |
title_full_unstemmed |
Essentially orthogonal subspaces |
title_sort |
Essentially orthogonal subspaces |
dc.creator.none.fl_str_mv |
Andruchow, Esteban Corach, Gustavo |
author |
Andruchow, Esteban |
author_facet |
Andruchow, Esteban Corach, Gustavo |
author_role |
author |
author2 |
Corach, Gustavo |
author2_role |
author |
dc.subject.none.fl_str_mv |
Projections Pairs of projections Compact operators Grasmann manifold |
topic |
Projections Pairs of projections Compact operators Grasmann manifold |
dc.description.none.fl_txt_mv |
Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina. Fil: Corach, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina. We study the set C consisting of pairs of orthogonal projectionsP,Q acting in a Hilbert space H such that PQ is a compact operator. Thesepairs have a rich geometric structure which we describe here. They are partitionedin three subclasses: C0 consists of pairs where P or Q have finite rank,C1 of pairs such that Q lies in the restricted Grassmannian (also called Sato-Grassmannian) of the polarization H = N(P)? R(P), and C?. We characterize the connected components of these classes: the components of C0 are parametrized by the rank, the components of C1 are parametrized by the Fredholm index of the pairs, and C? is connected. We show that these subsets are(non-complemented) differentiable submanifolds of B(H) x B(H). |
description |
Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018 2024-12-23T13:21:48Z 2024-12-23T13:21:48Z |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
Andruchow, E. y Corach, G. (2018). Essentially orthogonal subspaces. Journal Of Operator Theory, 79(1), 79-100. 0379-4024 http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/1808 |
identifier_str_mv |
Andruchow, E. y Corach, G. (2018). Essentially orthogonal subspaces. Journal Of Operator Theory, 79(1), 79-100. 0379-4024 |
url |
http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/1808 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.7900/jot.2016dec13.2138 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Theta Foundation |
publisher.none.fl_str_mv |
Theta Foundation |
dc.source.none.fl_str_mv |
Journal Of Operator Theory. Ene. 2018; 79(1): 79-100 https://www.theta.ro/jot/archive/2018-079-001/index_2018-079-001.html reponame:Repositorio Institucional UNGS instname:Universidad Nacional de General Sarmiento |
reponame_str |
Repositorio Institucional UNGS |
collection |
Repositorio Institucional UNGS |
instname_str |
Universidad Nacional de General Sarmiento |
repository.name.fl_str_mv |
Repositorio Institucional UNGS - Universidad Nacional de General Sarmiento |
repository.mail.fl_str_mv |
ubyd@campus.ungs.edu.ar |
_version_ |
1842346539623645184 |
score |
12.623145 |