Rayleigh-Ritz variational method with suitable asymptotic behaviour
- Autores
- Fernández, Francisco Marcelo; García, Javier
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This paper considers the Rayleigh-Ritz variational calculations with non-orthogonal basis sets that exhibit the correct asymptotic behaviour. This approach is illustrated by constructing suitable basis sets for one-dimensional models such as the two double-well oscillators recently considered by other authors. The rate of convergence of the variational method proves to be considerably greater than the one exhibited by the recently developed orthogonal polynomial projection quantization.
Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas - Materia
-
Ciencias Exactas
anharmonic oscillators
asymptotic behaviour
orthogonal polynomial projection quantization
rate of convergence
Rayleigh-Ritz method - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/85082
Ver los metadatos del registro completo
id |
SEDICI_4f03f481c0ed9cf831f6814e5fe570b1 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/85082 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Rayleigh-Ritz variational method with suitable asymptotic behaviourFernández, Francisco MarceloGarcía, JavierCiencias Exactasanharmonic oscillatorsasymptotic behaviourorthogonal polynomial projection quantizationrate of convergenceRayleigh-Ritz methodThis paper considers the Rayleigh-Ritz variational calculations with non-orthogonal basis sets that exhibit the correct asymptotic behaviour. This approach is illustrated by constructing suitable basis sets for one-dimensional models such as the two double-well oscillators recently considered by other authors. The rate of convergence of the variational method proves to be considerably greater than the one exhibited by the recently developed orthogonal polynomial projection quantization.Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas2014info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf554-558http://sedici.unlp.edu.ar/handle/10915/85082enginfo:eu-repo/semantics/altIdentifier/issn/1895-1082info:eu-repo/semantics/altIdentifier/doi/10.2478/s11534-014-0477-4info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:48:41Zoai:sedici.unlp.edu.ar:10915/85082Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:48:42.17SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Rayleigh-Ritz variational method with suitable asymptotic behaviour |
title |
Rayleigh-Ritz variational method with suitable asymptotic behaviour |
spellingShingle |
Rayleigh-Ritz variational method with suitable asymptotic behaviour Fernández, Francisco Marcelo Ciencias Exactas anharmonic oscillators asymptotic behaviour orthogonal polynomial projection quantization rate of convergence Rayleigh-Ritz method |
title_short |
Rayleigh-Ritz variational method with suitable asymptotic behaviour |
title_full |
Rayleigh-Ritz variational method with suitable asymptotic behaviour |
title_fullStr |
Rayleigh-Ritz variational method with suitable asymptotic behaviour |
title_full_unstemmed |
Rayleigh-Ritz variational method with suitable asymptotic behaviour |
title_sort |
Rayleigh-Ritz variational method with suitable asymptotic behaviour |
dc.creator.none.fl_str_mv |
Fernández, Francisco Marcelo García, Javier |
author |
Fernández, Francisco Marcelo |
author_facet |
Fernández, Francisco Marcelo García, Javier |
author_role |
author |
author2 |
García, Javier |
author2_role |
author |
dc.subject.none.fl_str_mv |
Ciencias Exactas anharmonic oscillators asymptotic behaviour orthogonal polynomial projection quantization rate of convergence Rayleigh-Ritz method |
topic |
Ciencias Exactas anharmonic oscillators asymptotic behaviour orthogonal polynomial projection quantization rate of convergence Rayleigh-Ritz method |
dc.description.none.fl_txt_mv |
This paper considers the Rayleigh-Ritz variational calculations with non-orthogonal basis sets that exhibit the correct asymptotic behaviour. This approach is illustrated by constructing suitable basis sets for one-dimensional models such as the two double-well oscillators recently considered by other authors. The rate of convergence of the variational method proves to be considerably greater than the one exhibited by the recently developed orthogonal polynomial projection quantization. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas |
description |
This paper considers the Rayleigh-Ritz variational calculations with non-orthogonal basis sets that exhibit the correct asymptotic behaviour. This approach is illustrated by constructing suitable basis sets for one-dimensional models such as the two double-well oscillators recently considered by other authors. The rate of convergence of the variational method proves to be considerably greater than the one exhibited by the recently developed orthogonal polynomial projection quantization. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/85082 |
url |
http://sedici.unlp.edu.ar/handle/10915/85082 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/1895-1082 info:eu-repo/semantics/altIdentifier/doi/10.2478/s11534-014-0477-4 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 554-558 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842260362999627776 |
score |
13.13397 |