Rayleigh-Ritz variational method with suitable asymptotic behaviour

Autores
Fernández, Francisco Marcelo; García, Javier
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
This paper considers the Rayleigh-Ritz variational calculations with non-orthogonal basis sets that exhibit the correct asymptotic behaviour. This approach is illustrated by constructing suitable basis sets for one-dimensional models such as the two double-well oscillators recently considered by other authors. The rate of convergence of the variational method proves to be considerably greater than the one exhibited by the recently developed orthogonal polynomial projection quantization.
Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas
Materia
Ciencias Exactas
anharmonic oscillators
asymptotic behaviour
orthogonal polynomial projection quantization
rate of convergence
Rayleigh-Ritz method
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/85082

id SEDICI_4f03f481c0ed9cf831f6814e5fe570b1
oai_identifier_str oai:sedici.unlp.edu.ar:10915/85082
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Rayleigh-Ritz variational method with suitable asymptotic behaviourFernández, Francisco MarceloGarcía, JavierCiencias Exactasanharmonic oscillatorsasymptotic behaviourorthogonal polynomial projection quantizationrate of convergenceRayleigh-Ritz methodThis paper considers the Rayleigh-Ritz variational calculations with non-orthogonal basis sets that exhibit the correct asymptotic behaviour. This approach is illustrated by constructing suitable basis sets for one-dimensional models such as the two double-well oscillators recently considered by other authors. The rate of convergence of the variational method proves to be considerably greater than the one exhibited by the recently developed orthogonal polynomial projection quantization.Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas2014info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf554-558http://sedici.unlp.edu.ar/handle/10915/85082enginfo:eu-repo/semantics/altIdentifier/issn/1895-1082info:eu-repo/semantics/altIdentifier/doi/10.2478/s11534-014-0477-4info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:48:41Zoai:sedici.unlp.edu.ar:10915/85082Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:48:42.17SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Rayleigh-Ritz variational method with suitable asymptotic behaviour
title Rayleigh-Ritz variational method with suitable asymptotic behaviour
spellingShingle Rayleigh-Ritz variational method with suitable asymptotic behaviour
Fernández, Francisco Marcelo
Ciencias Exactas
anharmonic oscillators
asymptotic behaviour
orthogonal polynomial projection quantization
rate of convergence
Rayleigh-Ritz method
title_short Rayleigh-Ritz variational method with suitable asymptotic behaviour
title_full Rayleigh-Ritz variational method with suitable asymptotic behaviour
title_fullStr Rayleigh-Ritz variational method with suitable asymptotic behaviour
title_full_unstemmed Rayleigh-Ritz variational method with suitable asymptotic behaviour
title_sort Rayleigh-Ritz variational method with suitable asymptotic behaviour
dc.creator.none.fl_str_mv Fernández, Francisco Marcelo
García, Javier
author Fernández, Francisco Marcelo
author_facet Fernández, Francisco Marcelo
García, Javier
author_role author
author2 García, Javier
author2_role author
dc.subject.none.fl_str_mv Ciencias Exactas
anharmonic oscillators
asymptotic behaviour
orthogonal polynomial projection quantization
rate of convergence
Rayleigh-Ritz method
topic Ciencias Exactas
anharmonic oscillators
asymptotic behaviour
orthogonal polynomial projection quantization
rate of convergence
Rayleigh-Ritz method
dc.description.none.fl_txt_mv This paper considers the Rayleigh-Ritz variational calculations with non-orthogonal basis sets that exhibit the correct asymptotic behaviour. This approach is illustrated by constructing suitable basis sets for one-dimensional models such as the two double-well oscillators recently considered by other authors. The rate of convergence of the variational method proves to be considerably greater than the one exhibited by the recently developed orthogonal polynomial projection quantization.
Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas
description This paper considers the Rayleigh-Ritz variational calculations with non-orthogonal basis sets that exhibit the correct asymptotic behaviour. This approach is illustrated by constructing suitable basis sets for one-dimensional models such as the two double-well oscillators recently considered by other authors. The rate of convergence of the variational method proves to be considerably greater than the one exhibited by the recently developed orthogonal polynomial projection quantization.
publishDate 2014
dc.date.none.fl_str_mv 2014
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/85082
url http://sedici.unlp.edu.ar/handle/10915/85082
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/1895-1082
info:eu-repo/semantics/altIdentifier/doi/10.2478/s11534-014-0477-4
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
554-558
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1842260362999627776
score 13.13397