Solution to the Equations of the Moment Expansions
- Autores
- Amore, Paolo; Fernández, Francisco Marcelo
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We develop a formula for matching a Taylor series about the origin and an asymptotic exponential expansion for large values of the coordinate. We test it on the expansion of the generating functions for the moments and connected moments of the Hamiltonian operator. In the former case the formula produces the energies and overlaps for the Rayleigh-Ritz method in the Krylov space. We choose the harmonic oscillator and a strongly anharmonic oscillator as illustrative examples for numerical test. Our results reveal some features of the connected-moments expansion that were overlooked in earlier studies and applications of the approach
Fil: Amore, Paolo. Universidad de Colima; México
Fil: Fernández, Francisco Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Universidad Nacional de La Plata; Argentina - Materia
-
Connected-Moments Expansion
Anharmonic Oscillators
Convergence
Rayleigh-Ritz Method - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/4774
Ver los metadatos del registro completo
id |
CONICETDig_bf4da232d4c06bcd84f147036b069478 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/4774 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Solution to the Equations of the Moment ExpansionsAmore, PaoloFernández, Francisco MarceloConnected-Moments ExpansionAnharmonic OscillatorsConvergenceRayleigh-Ritz Methodhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1We develop a formula for matching a Taylor series about the origin and an asymptotic exponential expansion for large values of the coordinate. We test it on the expansion of the generating functions for the moments and connected moments of the Hamiltonian operator. In the former case the formula produces the energies and overlaps for the Rayleigh-Ritz method in the Krylov space. We choose the harmonic oscillator and a strongly anharmonic oscillator as illustrative examples for numerical test. Our results reveal some features of the connected-moments expansion that were overlooked in earlier studies and applications of the approachFil: Amore, Paolo. Universidad de Colima; MéxicoFil: Fernández, Francisco Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Universidad Nacional de La Plata; ArgentinaVersita2013-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/4774Amore, Paolo; Fernández, Francisco Marcelo; Solution to the Equations of the Moment Expansions; Versita; Central European Journal Of Physics; 11; 2; 1-2013; 195-2051895-1082enginfo:eu-repo/semantics/altIdentifier/issn/1895-1082info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.2478%2Fs11534-012-0154-4info:eu-repo/semantics/altIdentifier/doi/10.2478/s11534-012-0154-4info:eu-repo/semantics/altIdentifier/url/http://www.degruyter.com/view/j/phys.2013.11.issue-2/s11534-012-0154-4/s11534-012-0154-4.xmlinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:06:28Zoai:ri.conicet.gov.ar:11336/4774instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:06:29.049CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Solution to the Equations of the Moment Expansions |
title |
Solution to the Equations of the Moment Expansions |
spellingShingle |
Solution to the Equations of the Moment Expansions Amore, Paolo Connected-Moments Expansion Anharmonic Oscillators Convergence Rayleigh-Ritz Method |
title_short |
Solution to the Equations of the Moment Expansions |
title_full |
Solution to the Equations of the Moment Expansions |
title_fullStr |
Solution to the Equations of the Moment Expansions |
title_full_unstemmed |
Solution to the Equations of the Moment Expansions |
title_sort |
Solution to the Equations of the Moment Expansions |
dc.creator.none.fl_str_mv |
Amore, Paolo Fernández, Francisco Marcelo |
author |
Amore, Paolo |
author_facet |
Amore, Paolo Fernández, Francisco Marcelo |
author_role |
author |
author2 |
Fernández, Francisco Marcelo |
author2_role |
author |
dc.subject.none.fl_str_mv |
Connected-Moments Expansion Anharmonic Oscillators Convergence Rayleigh-Ritz Method |
topic |
Connected-Moments Expansion Anharmonic Oscillators Convergence Rayleigh-Ritz Method |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We develop a formula for matching a Taylor series about the origin and an asymptotic exponential expansion for large values of the coordinate. We test it on the expansion of the generating functions for the moments and connected moments of the Hamiltonian operator. In the former case the formula produces the energies and overlaps for the Rayleigh-Ritz method in the Krylov space. We choose the harmonic oscillator and a strongly anharmonic oscillator as illustrative examples for numerical test. Our results reveal some features of the connected-moments expansion that were overlooked in earlier studies and applications of the approach Fil: Amore, Paolo. Universidad de Colima; México Fil: Fernández, Francisco Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Universidad Nacional de La Plata; Argentina |
description |
We develop a formula for matching a Taylor series about the origin and an asymptotic exponential expansion for large values of the coordinate. We test it on the expansion of the generating functions for the moments and connected moments of the Hamiltonian operator. In the former case the formula produces the energies and overlaps for the Rayleigh-Ritz method in the Krylov space. We choose the harmonic oscillator and a strongly anharmonic oscillator as illustrative examples for numerical test. Our results reveal some features of the connected-moments expansion that were overlooked in earlier studies and applications of the approach |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/4774 Amore, Paolo; Fernández, Francisco Marcelo; Solution to the Equations of the Moment Expansions; Versita; Central European Journal Of Physics; 11; 2; 1-2013; 195-205 1895-1082 |
url |
http://hdl.handle.net/11336/4774 |
identifier_str_mv |
Amore, Paolo; Fernández, Francisco Marcelo; Solution to the Equations of the Moment Expansions; Versita; Central European Journal Of Physics; 11; 2; 1-2013; 195-205 1895-1082 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/1895-1082 info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.2478%2Fs11534-012-0154-4 info:eu-repo/semantics/altIdentifier/doi/10.2478/s11534-012-0154-4 info:eu-repo/semantics/altIdentifier/url/http://www.degruyter.com/view/j/phys.2013.11.issue-2/s11534-012-0154-4/s11534-012-0154-4.xml |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Versita |
publisher.none.fl_str_mv |
Versita |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980269223575552 |
score |
12.993085 |