Solution to the Equations of the Moment Expansions

Autores
Amore, Paolo; Fernández, Francisco Marcelo
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We develop a formula for matching a Taylor series about the origin and an asymptotic exponential expansion for large values of the coordinate. We test it on the expansion of the generating functions for the moments and connected moments of the Hamiltonian operator. In the former case the formula produces the energies and overlaps for the Rayleigh-Ritz method in the Krylov space. We choose the harmonic oscillator and a strongly anharmonic oscillator as illustrative examples for numerical test. Our results reveal some features of the connected-moments expansion that were overlooked in earlier studies and applications of the approach
Fil: Amore, Paolo. Universidad de Colima; México
Fil: Fernández, Francisco Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Universidad Nacional de La Plata; Argentina
Materia
Connected-Moments Expansion
Anharmonic Oscillators
Convergence
Rayleigh-Ritz Method
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/4774

id CONICETDig_bf4da232d4c06bcd84f147036b069478
oai_identifier_str oai:ri.conicet.gov.ar:11336/4774
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Solution to the Equations of the Moment ExpansionsAmore, PaoloFernández, Francisco MarceloConnected-Moments ExpansionAnharmonic OscillatorsConvergenceRayleigh-Ritz Methodhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1We develop a formula for matching a Taylor series about the origin and an asymptotic exponential expansion for large values of the coordinate. We test it on the expansion of the generating functions for the moments and connected moments of the Hamiltonian operator. In the former case the formula produces the energies and overlaps for the Rayleigh-Ritz method in the Krylov space. We choose the harmonic oscillator and a strongly anharmonic oscillator as illustrative examples for numerical test. Our results reveal some features of the connected-moments expansion that were overlooked in earlier studies and applications of the approachFil: Amore, Paolo. Universidad de Colima; MéxicoFil: Fernández, Francisco Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Universidad Nacional de La Plata; ArgentinaVersita2013-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/4774Amore, Paolo; Fernández, Francisco Marcelo; Solution to the Equations of the Moment Expansions; Versita; Central European Journal Of Physics; 11; 2; 1-2013; 195-2051895-1082enginfo:eu-repo/semantics/altIdentifier/issn/1895-1082info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.2478%2Fs11534-012-0154-4info:eu-repo/semantics/altIdentifier/doi/10.2478/s11534-012-0154-4info:eu-repo/semantics/altIdentifier/url/http://www.degruyter.com/view/j/phys.2013.11.issue-2/s11534-012-0154-4/s11534-012-0154-4.xmlinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:06:28Zoai:ri.conicet.gov.ar:11336/4774instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:06:29.049CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Solution to the Equations of the Moment Expansions
title Solution to the Equations of the Moment Expansions
spellingShingle Solution to the Equations of the Moment Expansions
Amore, Paolo
Connected-Moments Expansion
Anharmonic Oscillators
Convergence
Rayleigh-Ritz Method
title_short Solution to the Equations of the Moment Expansions
title_full Solution to the Equations of the Moment Expansions
title_fullStr Solution to the Equations of the Moment Expansions
title_full_unstemmed Solution to the Equations of the Moment Expansions
title_sort Solution to the Equations of the Moment Expansions
dc.creator.none.fl_str_mv Amore, Paolo
Fernández, Francisco Marcelo
author Amore, Paolo
author_facet Amore, Paolo
Fernández, Francisco Marcelo
author_role author
author2 Fernández, Francisco Marcelo
author2_role author
dc.subject.none.fl_str_mv Connected-Moments Expansion
Anharmonic Oscillators
Convergence
Rayleigh-Ritz Method
topic Connected-Moments Expansion
Anharmonic Oscillators
Convergence
Rayleigh-Ritz Method
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We develop a formula for matching a Taylor series about the origin and an asymptotic exponential expansion for large values of the coordinate. We test it on the expansion of the generating functions for the moments and connected moments of the Hamiltonian operator. In the former case the formula produces the energies and overlaps for the Rayleigh-Ritz method in the Krylov space. We choose the harmonic oscillator and a strongly anharmonic oscillator as illustrative examples for numerical test. Our results reveal some features of the connected-moments expansion that were overlooked in earlier studies and applications of the approach
Fil: Amore, Paolo. Universidad de Colima; México
Fil: Fernández, Francisco Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Universidad Nacional de La Plata; Argentina
description We develop a formula for matching a Taylor series about the origin and an asymptotic exponential expansion for large values of the coordinate. We test it on the expansion of the generating functions for the moments and connected moments of the Hamiltonian operator. In the former case the formula produces the energies and overlaps for the Rayleigh-Ritz method in the Krylov space. We choose the harmonic oscillator and a strongly anharmonic oscillator as illustrative examples for numerical test. Our results reveal some features of the connected-moments expansion that were overlooked in earlier studies and applications of the approach
publishDate 2013
dc.date.none.fl_str_mv 2013-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/4774
Amore, Paolo; Fernández, Francisco Marcelo; Solution to the Equations of the Moment Expansions; Versita; Central European Journal Of Physics; 11; 2; 1-2013; 195-205
1895-1082
url http://hdl.handle.net/11336/4774
identifier_str_mv Amore, Paolo; Fernández, Francisco Marcelo; Solution to the Equations of the Moment Expansions; Versita; Central European Journal Of Physics; 11; 2; 1-2013; 195-205
1895-1082
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/1895-1082
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.2478%2Fs11534-012-0154-4
info:eu-repo/semantics/altIdentifier/doi/10.2478/s11534-012-0154-4
info:eu-repo/semantics/altIdentifier/url/http://www.degruyter.com/view/j/phys.2013.11.issue-2/s11534-012-0154-4/s11534-012-0154-4.xml
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Versita
publisher.none.fl_str_mv Versita
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842980269223575552
score 12.993085