Rayleigh-Ritz variational method with suitable asymptotic behaviour
- Autores
- Fernández, Francisco Marcelo; Garcia, Javier
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We discuss Rayleigh-Ritz variational calculations with nonorthogonal basis sets that exhibit the correct asymptotic behaviour. We construct the suitable basis sets for general one-dimensional models and illustrate the application of the approach on two double-well oscillators proposed recently by other authors. The rate of convergence of the variational method proves to be considerably greater than the one exhibited by the recently developed orthogonal polynomial projection quantization.
Fil: Fernández, Francisco Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Universidad Nacional de La Plata; Argentina
Fil: Garcia, Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Universidad Nacional de La Plata; Argentina - Materia
-
Rayleigh-Ritz Method
Asymptotic Behaviour
Anharmonic Oscillators
Rate of Convergence - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/5149
Ver los metadatos del registro completo
id |
CONICETDig_56781ef1ed0180759172776f3daf7c1b |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/5149 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Rayleigh-Ritz variational method with suitable asymptotic behaviourFernández, Francisco MarceloGarcia, JavierRayleigh-Ritz MethodAsymptotic BehaviourAnharmonic OscillatorsRate of Convergencehttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1We discuss Rayleigh-Ritz variational calculations with nonorthogonal basis sets that exhibit the correct asymptotic behaviour. We construct the suitable basis sets for general one-dimensional models and illustrate the application of the approach on two double-well oscillators proposed recently by other authors. The rate of convergence of the variational method proves to be considerably greater than the one exhibited by the recently developed orthogonal polynomial projection quantization.Fil: Fernández, Francisco Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Universidad Nacional de La Plata; ArgentinaFil: Garcia, Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Universidad Nacional de La Plata; ArgentinaVersita2014-06-14info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/5149Fernández, Francisco Marcelo; Garcia, Javier; Rayleigh-Ritz variational method with suitable asymptotic behaviour; Versita; Central European Journal of Physics; 12; 8; 14-6-2014; 554-5581895-1082enginfo:eu-repo/semantics/altIdentifier/arxiv/1308.0001v1info:eu-repo/semantics/altIdentifier/url/http://arxiv.org/abs/1308.0001info:eu-repo/semantics/altIdentifier/doi/info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.2478%2Fs11534-014-0477-4info:eu-repo/semantics/altIdentifier/doi/10.2478/s11534-014-0477-4info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:48:50Zoai:ri.conicet.gov.ar:11336/5149instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:48:50.64CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Rayleigh-Ritz variational method with suitable asymptotic behaviour |
title |
Rayleigh-Ritz variational method with suitable asymptotic behaviour |
spellingShingle |
Rayleigh-Ritz variational method with suitable asymptotic behaviour Fernández, Francisco Marcelo Rayleigh-Ritz Method Asymptotic Behaviour Anharmonic Oscillators Rate of Convergence |
title_short |
Rayleigh-Ritz variational method with suitable asymptotic behaviour |
title_full |
Rayleigh-Ritz variational method with suitable asymptotic behaviour |
title_fullStr |
Rayleigh-Ritz variational method with suitable asymptotic behaviour |
title_full_unstemmed |
Rayleigh-Ritz variational method with suitable asymptotic behaviour |
title_sort |
Rayleigh-Ritz variational method with suitable asymptotic behaviour |
dc.creator.none.fl_str_mv |
Fernández, Francisco Marcelo Garcia, Javier |
author |
Fernández, Francisco Marcelo |
author_facet |
Fernández, Francisco Marcelo Garcia, Javier |
author_role |
author |
author2 |
Garcia, Javier |
author2_role |
author |
dc.subject.none.fl_str_mv |
Rayleigh-Ritz Method Asymptotic Behaviour Anharmonic Oscillators Rate of Convergence |
topic |
Rayleigh-Ritz Method Asymptotic Behaviour Anharmonic Oscillators Rate of Convergence |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We discuss Rayleigh-Ritz variational calculations with nonorthogonal basis sets that exhibit the correct asymptotic behaviour. We construct the suitable basis sets for general one-dimensional models and illustrate the application of the approach on two double-well oscillators proposed recently by other authors. The rate of convergence of the variational method proves to be considerably greater than the one exhibited by the recently developed orthogonal polynomial projection quantization. Fil: Fernández, Francisco Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Universidad Nacional de La Plata; Argentina Fil: Garcia, Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Universidad Nacional de La Plata; Argentina |
description |
We discuss Rayleigh-Ritz variational calculations with nonorthogonal basis sets that exhibit the correct asymptotic behaviour. We construct the suitable basis sets for general one-dimensional models and illustrate the application of the approach on two double-well oscillators proposed recently by other authors. The rate of convergence of the variational method proves to be considerably greater than the one exhibited by the recently developed orthogonal polynomial projection quantization. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-06-14 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/5149 Fernández, Francisco Marcelo; Garcia, Javier; Rayleigh-Ritz variational method with suitable asymptotic behaviour; Versita; Central European Journal of Physics; 12; 8; 14-6-2014; 554-558 1895-1082 |
url |
http://hdl.handle.net/11336/5149 |
identifier_str_mv |
Fernández, Francisco Marcelo; Garcia, Javier; Rayleigh-Ritz variational method with suitable asymptotic behaviour; Versita; Central European Journal of Physics; 12; 8; 14-6-2014; 554-558 1895-1082 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/arxiv/1308.0001v1 info:eu-repo/semantics/altIdentifier/url/http://arxiv.org/abs/1308.0001 info:eu-repo/semantics/altIdentifier/doi/ info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.2478%2Fs11534-014-0477-4 info:eu-repo/semantics/altIdentifier/doi/10.2478/s11534-014-0477-4 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Versita |
publisher.none.fl_str_mv |
Versita |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268942190510080 |
score |
13.13397 |