Rayleigh-Ritz variational method with suitable asymptotic behaviour

Autores
Fernández, Francisco Marcelo; Garcia, Javier
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We discuss Rayleigh-Ritz variational calculations with nonorthogonal basis sets that exhibit the correct asymptotic behaviour. We construct the suitable basis sets for general one-dimensional models and illustrate the application of the approach on two double-well oscillators proposed recently by other authors. The rate of convergence of the variational method proves to be considerably greater than the one exhibited by the recently developed orthogonal polynomial projection quantization.
Fil: Fernández, Francisco Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Universidad Nacional de La Plata; Argentina
Fil: Garcia, Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Universidad Nacional de La Plata; Argentina
Materia
Rayleigh-Ritz Method
Asymptotic Behaviour
Anharmonic Oscillators
Rate of Convergence
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/5149

id CONICETDig_56781ef1ed0180759172776f3daf7c1b
oai_identifier_str oai:ri.conicet.gov.ar:11336/5149
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Rayleigh-Ritz variational method with suitable asymptotic behaviourFernández, Francisco MarceloGarcia, JavierRayleigh-Ritz MethodAsymptotic BehaviourAnharmonic OscillatorsRate of Convergencehttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1We discuss Rayleigh-Ritz variational calculations with nonorthogonal basis sets that exhibit the correct asymptotic behaviour. We construct the suitable basis sets for general one-dimensional models and illustrate the application of the approach on two double-well oscillators proposed recently by other authors. The rate of convergence of the variational method proves to be considerably greater than the one exhibited by the recently developed orthogonal polynomial projection quantization.Fil: Fernández, Francisco Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Universidad Nacional de La Plata; ArgentinaFil: Garcia, Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Universidad Nacional de La Plata; ArgentinaVersita2014-06-14info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/5149Fernández, Francisco Marcelo; Garcia, Javier; Rayleigh-Ritz variational method with suitable asymptotic behaviour; Versita; Central European Journal of Physics; 12; 8; 14-6-2014; 554-5581895-1082enginfo:eu-repo/semantics/altIdentifier/arxiv/1308.0001v1info:eu-repo/semantics/altIdentifier/url/http://arxiv.org/abs/1308.0001info:eu-repo/semantics/altIdentifier/doi/info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.2478%2Fs11534-014-0477-4info:eu-repo/semantics/altIdentifier/doi/10.2478/s11534-014-0477-4info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:48:50Zoai:ri.conicet.gov.ar:11336/5149instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:48:50.64CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Rayleigh-Ritz variational method with suitable asymptotic behaviour
title Rayleigh-Ritz variational method with suitable asymptotic behaviour
spellingShingle Rayleigh-Ritz variational method with suitable asymptotic behaviour
Fernández, Francisco Marcelo
Rayleigh-Ritz Method
Asymptotic Behaviour
Anharmonic Oscillators
Rate of Convergence
title_short Rayleigh-Ritz variational method with suitable asymptotic behaviour
title_full Rayleigh-Ritz variational method with suitable asymptotic behaviour
title_fullStr Rayleigh-Ritz variational method with suitable asymptotic behaviour
title_full_unstemmed Rayleigh-Ritz variational method with suitable asymptotic behaviour
title_sort Rayleigh-Ritz variational method with suitable asymptotic behaviour
dc.creator.none.fl_str_mv Fernández, Francisco Marcelo
Garcia, Javier
author Fernández, Francisco Marcelo
author_facet Fernández, Francisco Marcelo
Garcia, Javier
author_role author
author2 Garcia, Javier
author2_role author
dc.subject.none.fl_str_mv Rayleigh-Ritz Method
Asymptotic Behaviour
Anharmonic Oscillators
Rate of Convergence
topic Rayleigh-Ritz Method
Asymptotic Behaviour
Anharmonic Oscillators
Rate of Convergence
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We discuss Rayleigh-Ritz variational calculations with nonorthogonal basis sets that exhibit the correct asymptotic behaviour. We construct the suitable basis sets for general one-dimensional models and illustrate the application of the approach on two double-well oscillators proposed recently by other authors. The rate of convergence of the variational method proves to be considerably greater than the one exhibited by the recently developed orthogonal polynomial projection quantization.
Fil: Fernández, Francisco Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Universidad Nacional de La Plata; Argentina
Fil: Garcia, Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Universidad Nacional de La Plata; Argentina
description We discuss Rayleigh-Ritz variational calculations with nonorthogonal basis sets that exhibit the correct asymptotic behaviour. We construct the suitable basis sets for general one-dimensional models and illustrate the application of the approach on two double-well oscillators proposed recently by other authors. The rate of convergence of the variational method proves to be considerably greater than the one exhibited by the recently developed orthogonal polynomial projection quantization.
publishDate 2014
dc.date.none.fl_str_mv 2014-06-14
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/5149
Fernández, Francisco Marcelo; Garcia, Javier; Rayleigh-Ritz variational method with suitable asymptotic behaviour; Versita; Central European Journal of Physics; 12; 8; 14-6-2014; 554-558
1895-1082
url http://hdl.handle.net/11336/5149
identifier_str_mv Fernández, Francisco Marcelo; Garcia, Javier; Rayleigh-Ritz variational method with suitable asymptotic behaviour; Versita; Central European Journal of Physics; 12; 8; 14-6-2014; 554-558
1895-1082
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/arxiv/1308.0001v1
info:eu-repo/semantics/altIdentifier/url/http://arxiv.org/abs/1308.0001
info:eu-repo/semantics/altIdentifier/doi/
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.2478%2Fs11534-014-0477-4
info:eu-repo/semantics/altIdentifier/doi/10.2478/s11534-014-0477-4
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Versita
publisher.none.fl_str_mv Versita
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268942190510080
score 13.13397