Image augmentation for object detection of grapevines

Autores
Parlanti, Tatiana Sofía; Lobos, Alejandro Martín; Moyano, Luis G.; Millan, Emmanuel N.
Año de publicación
2020
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
Machine Learning methods are widely used for data analysis in various areas. In this work we use Neural Networks for image analysis in order to detect grape fruit clusters. A set of manually tagged images is built and a comparison is made between different data augmentation techniques in order to analyse the best way to expand the image set. The technique presented here obtained up to 13% better detection performance starting with only 100 images for training. The types of transformations and filters that worked the best for these images are discussed. In addition, training and detection times in five different hardware infrastructures, both CPU and GPUs, are briefly discussed.
Workshop: WASI – Agentes y Sistemas Inteligentes
Red de Universidades con Carreras en Informática
Materia
Ciencias Informáticas
Machine learning
Neural networks
Deep learning
Object detection
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/113261

id SEDICI_4ca20edcb065dea741300c12c3bd8c27
oai_identifier_str oai:sedici.unlp.edu.ar:10915/113261
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Image augmentation for object detection of grapevinesParlanti, Tatiana SofíaLobos, Alejandro MartínMoyano, Luis G.Millan, Emmanuel N.Ciencias InformáticasMachine learningNeural networksDeep learningObject detectionMachine Learning methods are widely used for data analysis in various areas. In this work we use Neural Networks for image analysis in order to detect grape fruit clusters. A set of manually tagged images is built and a comparison is made between different data augmentation techniques in order to analyse the best way to expand the image set. The technique presented here obtained up to 13% better detection performance starting with only 100 images for training. The types of transformations and filters that worked the best for these images are discussed. In addition, training and detection times in five different hardware infrastructures, both CPU and GPUs, are briefly discussed.Workshop: WASI – Agentes y Sistemas InteligentesRed de Universidades con Carreras en Informática2020-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf31-40http://sedici.unlp.edu.ar/handle/10915/113261enginfo:eu-repo/semantics/altIdentifier/isbn/978-987-4417-90-9info:eu-repo/semantics/reference/hdl/10915/113243info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T11:18:14Zoai:sedici.unlp.edu.ar:10915/113261Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 11:18:14.666SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Image augmentation for object detection of grapevines
title Image augmentation for object detection of grapevines
spellingShingle Image augmentation for object detection of grapevines
Parlanti, Tatiana Sofía
Ciencias Informáticas
Machine learning
Neural networks
Deep learning
Object detection
title_short Image augmentation for object detection of grapevines
title_full Image augmentation for object detection of grapevines
title_fullStr Image augmentation for object detection of grapevines
title_full_unstemmed Image augmentation for object detection of grapevines
title_sort Image augmentation for object detection of grapevines
dc.creator.none.fl_str_mv Parlanti, Tatiana Sofía
Lobos, Alejandro Martín
Moyano, Luis G.
Millan, Emmanuel N.
author Parlanti, Tatiana Sofía
author_facet Parlanti, Tatiana Sofía
Lobos, Alejandro Martín
Moyano, Luis G.
Millan, Emmanuel N.
author_role author
author2 Lobos, Alejandro Martín
Moyano, Luis G.
Millan, Emmanuel N.
author2_role author
author
author
dc.subject.none.fl_str_mv Ciencias Informáticas
Machine learning
Neural networks
Deep learning
Object detection
topic Ciencias Informáticas
Machine learning
Neural networks
Deep learning
Object detection
dc.description.none.fl_txt_mv Machine Learning methods are widely used for data analysis in various areas. In this work we use Neural Networks for image analysis in order to detect grape fruit clusters. A set of manually tagged images is built and a comparison is made between different data augmentation techniques in order to analyse the best way to expand the image set. The technique presented here obtained up to 13% better detection performance starting with only 100 images for training. The types of transformations and filters that worked the best for these images are discussed. In addition, training and detection times in five different hardware infrastructures, both CPU and GPUs, are briefly discussed.
Workshop: WASI – Agentes y Sistemas Inteligentes
Red de Universidades con Carreras en Informática
description Machine Learning methods are widely used for data analysis in various areas. In this work we use Neural Networks for image analysis in order to detect grape fruit clusters. A set of manually tagged images is built and a comparison is made between different data augmentation techniques in order to analyse the best way to expand the image set. The technique presented here obtained up to 13% better detection performance starting with only 100 images for training. The types of transformations and filters that worked the best for these images are discussed. In addition, training and detection times in five different hardware infrastructures, both CPU and GPUs, are briefly discussed.
publishDate 2020
dc.date.none.fl_str_mv 2020-10
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/113261
url http://sedici.unlp.edu.ar/handle/10915/113261
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/isbn/978-987-4417-90-9
info:eu-repo/semantics/reference/hdl/10915/113243
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
31-40
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1846064240531603456
score 13.22299