Early detection of grapevine diseases using pre-trained Convolutional Neural Networks
- Autores
- Rios, Cristian Emmanuel; Estrebou, César Armando; Frati, Fernando Emmanuel
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- This paper proposes to apply pre-trained Convolutional Neural Networks (CNN) for the early detection of two common grapevine diseases: peronospora and o´ıdio. These diseases present similar symptoms and are of great viticultural importance. Our objective is to train a CNN using transfer learning techniques to accurately detect the presence of early symptoms of the diseases under study. To achieve that, we’ll design a pipeline that starts with data acquisition in the field and finalizes with the early disease identification, including class definition, labeling, image preprocessing and training process of the CNN, employing edge computing-based service computing paradigm to overcome some inherent problems of traditional mobile cloud computing paradigm.
Facultad de Informática - Materia
-
Ciencias Informáticas
Deep Learning
Convolutional Neural Networks
Object Detection
Edge Computing
Inclusive Inteligent Systems - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
.jpg)
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/155434
Ver los metadatos del registro completo
| id |
SEDICI_94d5a1bd45c23c29c193644b5ac42a95 |
|---|---|
| oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/155434 |
| network_acronym_str |
SEDICI |
| repository_id_str |
1329 |
| network_name_str |
SEDICI (UNLP) |
| spelling |
Early detection of grapevine diseases using pre-trained Convolutional Neural NetworksRios, Cristian EmmanuelEstrebou, César ArmandoFrati, Fernando EmmanuelCiencias InformáticasDeep LearningConvolutional Neural NetworksObject DetectionEdge ComputingInclusive Inteligent SystemsThis paper proposes to apply pre-trained Convolutional Neural Networks (CNN) for the early detection of two common grapevine diseases: peronospora and o´ıdio. These diseases present similar symptoms and are of great viticultural importance. Our objective is to train a CNN using transfer learning techniques to accurately detect the presence of early symptoms of the diseases under study. To achieve that, we’ll design a pipeline that starts with data acquisition in the field and finalizes with the early disease identification, including class definition, labeling, image preprocessing and training process of the CNN, employing edge computing-based service computing paradigm to overcome some inherent problems of traditional mobile cloud computing paradigm.Facultad de Informática2023-06info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf41-45http://sedici.unlp.edu.ar/handle/10915/155434enginfo:eu-repo/semantics/altIdentifier/isbn/978-950-34-2271-7info:eu-repo/semantics/reference/hdl/10915/155281info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-22T17:21:15Zoai:sedici.unlp.edu.ar:10915/155434Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-22 17:21:15.883SEDICI (UNLP) - Universidad Nacional de La Platafalse |
| dc.title.none.fl_str_mv |
Early detection of grapevine diseases using pre-trained Convolutional Neural Networks |
| title |
Early detection of grapevine diseases using pre-trained Convolutional Neural Networks |
| spellingShingle |
Early detection of grapevine diseases using pre-trained Convolutional Neural Networks Rios, Cristian Emmanuel Ciencias Informáticas Deep Learning Convolutional Neural Networks Object Detection Edge Computing Inclusive Inteligent Systems |
| title_short |
Early detection of grapevine diseases using pre-trained Convolutional Neural Networks |
| title_full |
Early detection of grapevine diseases using pre-trained Convolutional Neural Networks |
| title_fullStr |
Early detection of grapevine diseases using pre-trained Convolutional Neural Networks |
| title_full_unstemmed |
Early detection of grapevine diseases using pre-trained Convolutional Neural Networks |
| title_sort |
Early detection of grapevine diseases using pre-trained Convolutional Neural Networks |
| dc.creator.none.fl_str_mv |
Rios, Cristian Emmanuel Estrebou, César Armando Frati, Fernando Emmanuel |
| author |
Rios, Cristian Emmanuel |
| author_facet |
Rios, Cristian Emmanuel Estrebou, César Armando Frati, Fernando Emmanuel |
| author_role |
author |
| author2 |
Estrebou, César Armando Frati, Fernando Emmanuel |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
Ciencias Informáticas Deep Learning Convolutional Neural Networks Object Detection Edge Computing Inclusive Inteligent Systems |
| topic |
Ciencias Informáticas Deep Learning Convolutional Neural Networks Object Detection Edge Computing Inclusive Inteligent Systems |
| dc.description.none.fl_txt_mv |
This paper proposes to apply pre-trained Convolutional Neural Networks (CNN) for the early detection of two common grapevine diseases: peronospora and o´ıdio. These diseases present similar symptoms and are of great viticultural importance. Our objective is to train a CNN using transfer learning techniques to accurately detect the presence of early symptoms of the diseases under study. To achieve that, we’ll design a pipeline that starts with data acquisition in the field and finalizes with the early disease identification, including class definition, labeling, image preprocessing and training process of the CNN, employing edge computing-based service computing paradigm to overcome some inherent problems of traditional mobile cloud computing paradigm. Facultad de Informática |
| description |
This paper proposes to apply pre-trained Convolutional Neural Networks (CNN) for the early detection of two common grapevine diseases: peronospora and o´ıdio. These diseases present similar symptoms and are of great viticultural importance. Our objective is to train a CNN using transfer learning techniques to accurately detect the presence of early symptoms of the diseases under study. To achieve that, we’ll design a pipeline that starts with data acquisition in the field and finalizes with the early disease identification, including class definition, labeling, image preprocessing and training process of the CNN, employing edge computing-based service computing paradigm to overcome some inherent problems of traditional mobile cloud computing paradigm. |
| publishDate |
2023 |
| dc.date.none.fl_str_mv |
2023-06 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
| format |
conferenceObject |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/155434 |
| url |
http://sedici.unlp.edu.ar/handle/10915/155434 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/isbn/978-950-34-2271-7 info:eu-repo/semantics/reference/hdl/10915/155281 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
| dc.format.none.fl_str_mv |
application/pdf 41-45 |
| dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
| reponame_str |
SEDICI (UNLP) |
| collection |
SEDICI (UNLP) |
| instname_str |
Universidad Nacional de La Plata |
| instacron_str |
UNLP |
| institution |
UNLP |
| repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
| repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
| _version_ |
1846783643302756352 |
| score |
12.982451 |