Early detection of grapevine diseases using pre-trained Convolutional Neural Networks

Autores
Rios, Cristian Emmanuel; Estrebou, César Armando; Frati, Fernando Emmanuel
Año de publicación
2023
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
This paper proposes to apply pre-trained Convolutional Neural Networks (CNN) for the early detection of two common grapevine diseases: peronospora and o´ıdio. These diseases present similar symptoms and are of great viticultural importance. Our objective is to train a CNN using transfer learning techniques to accurately detect the presence of early symptoms of the diseases under study. To achieve that, we’ll design a pipeline that starts with data acquisition in the field and finalizes with the early disease identification, including class definition, labeling, image preprocessing and training process of the CNN, employing edge computing-based service computing paradigm to overcome some inherent problems of traditional mobile cloud computing paradigm.
Facultad de Informática
Materia
Ciencias Informáticas
Deep Learning
Convolutional Neural Networks
Object Detection
Edge Computing
Inclusive Inteligent Systems
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/155434

id SEDICI_94d5a1bd45c23c29c193644b5ac42a95
oai_identifier_str oai:sedici.unlp.edu.ar:10915/155434
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Early detection of grapevine diseases using pre-trained Convolutional Neural NetworksRios, Cristian EmmanuelEstrebou, César ArmandoFrati, Fernando EmmanuelCiencias InformáticasDeep LearningConvolutional Neural NetworksObject DetectionEdge ComputingInclusive Inteligent SystemsThis paper proposes to apply pre-trained Convolutional Neural Networks (CNN) for the early detection of two common grapevine diseases: peronospora and o´ıdio. These diseases present similar symptoms and are of great viticultural importance. Our objective is to train a CNN using transfer learning techniques to accurately detect the presence of early symptoms of the diseases under study. To achieve that, we’ll design a pipeline that starts with data acquisition in the field and finalizes with the early disease identification, including class definition, labeling, image preprocessing and training process of the CNN, employing edge computing-based service computing paradigm to overcome some inherent problems of traditional mobile cloud computing paradigm.Facultad de Informática2023-06info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf41-45http://sedici.unlp.edu.ar/handle/10915/155434enginfo:eu-repo/semantics/altIdentifier/isbn/978-950-34-2271-7info:eu-repo/semantics/reference/hdl/10915/155281info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-22T17:21:15Zoai:sedici.unlp.edu.ar:10915/155434Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-22 17:21:15.883SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Early detection of grapevine diseases using pre-trained Convolutional Neural Networks
title Early detection of grapevine diseases using pre-trained Convolutional Neural Networks
spellingShingle Early detection of grapevine diseases using pre-trained Convolutional Neural Networks
Rios, Cristian Emmanuel
Ciencias Informáticas
Deep Learning
Convolutional Neural Networks
Object Detection
Edge Computing
Inclusive Inteligent Systems
title_short Early detection of grapevine diseases using pre-trained Convolutional Neural Networks
title_full Early detection of grapevine diseases using pre-trained Convolutional Neural Networks
title_fullStr Early detection of grapevine diseases using pre-trained Convolutional Neural Networks
title_full_unstemmed Early detection of grapevine diseases using pre-trained Convolutional Neural Networks
title_sort Early detection of grapevine diseases using pre-trained Convolutional Neural Networks
dc.creator.none.fl_str_mv Rios, Cristian Emmanuel
Estrebou, César Armando
Frati, Fernando Emmanuel
author Rios, Cristian Emmanuel
author_facet Rios, Cristian Emmanuel
Estrebou, César Armando
Frati, Fernando Emmanuel
author_role author
author2 Estrebou, César Armando
Frati, Fernando Emmanuel
author2_role author
author
dc.subject.none.fl_str_mv Ciencias Informáticas
Deep Learning
Convolutional Neural Networks
Object Detection
Edge Computing
Inclusive Inteligent Systems
topic Ciencias Informáticas
Deep Learning
Convolutional Neural Networks
Object Detection
Edge Computing
Inclusive Inteligent Systems
dc.description.none.fl_txt_mv This paper proposes to apply pre-trained Convolutional Neural Networks (CNN) for the early detection of two common grapevine diseases: peronospora and o´ıdio. These diseases present similar symptoms and are of great viticultural importance. Our objective is to train a CNN using transfer learning techniques to accurately detect the presence of early symptoms of the diseases under study. To achieve that, we’ll design a pipeline that starts with data acquisition in the field and finalizes with the early disease identification, including class definition, labeling, image preprocessing and training process of the CNN, employing edge computing-based service computing paradigm to overcome some inherent problems of traditional mobile cloud computing paradigm.
Facultad de Informática
description This paper proposes to apply pre-trained Convolutional Neural Networks (CNN) for the early detection of two common grapevine diseases: peronospora and o´ıdio. These diseases present similar symptoms and are of great viticultural importance. Our objective is to train a CNN using transfer learning techniques to accurately detect the presence of early symptoms of the diseases under study. To achieve that, we’ll design a pipeline that starts with data acquisition in the field and finalizes with the early disease identification, including class definition, labeling, image preprocessing and training process of the CNN, employing edge computing-based service computing paradigm to overcome some inherent problems of traditional mobile cloud computing paradigm.
publishDate 2023
dc.date.none.fl_str_mv 2023-06
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/155434
url http://sedici.unlp.edu.ar/handle/10915/155434
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/isbn/978-950-34-2271-7
info:eu-repo/semantics/reference/hdl/10915/155281
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
41-45
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1846783643302756352
score 12.982451