Forecasting virus outbreaks with social media data via neural ordinary differential equations
- Autores
- Nuñez, Matias; Barreiro, Nadia Luisina; Barrio, Rafael Ángel; Rackauckas, Christopher
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- During the Covid-19 pandemic, real-time social media data could in principle be used as an early predictor of a new epidemic wave. This possibility is examined here by employing a neural ordinary differential equation (neural ODE) trained to forecast viral outbreaks in a specific geographic region. It learns from multivariate time series of signals derived from a novel set of large online polls regarding COVID-19 symptoms. Once trained, the neural ODE can capture the dynamics of interconnected local signals and effectively estimate the number of new infections up to two months in advance. In addition, it may predict the future consequences of changes in the number of infected at a certain period, which might be related with the flow of individuals entering or exiting a region. This study provides persuasive evidence for the predictive ability of widely disseminated social media surveys for public health applications.
Fil: Nuñez, Matias. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina
Fil: Barreiro, Nadia Luisina. Ministerio de Defensa. Instituto de Investigaciones Científicas y Técnicas para la Defensa; Argentina
Fil: Barrio, Rafael Ángel. Universidad Nacional Autónoma de México; México
Fil: Rackauckas, Christopher. No especifíca; - Materia
-
machine learning
neural ode
deep learning
covid 19 - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/240737
Ver los metadatos del registro completo
id |
CONICETDig_0555c4ee2a8db0fed767874be40dffc2 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/240737 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Forecasting virus outbreaks with social media data via neural ordinary differential equationsNuñez, MatiasBarreiro, Nadia LuisinaBarrio, Rafael ÁngelRackauckas, Christophermachine learningneural odedeep learningcovid 19https://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1During the Covid-19 pandemic, real-time social media data could in principle be used as an early predictor of a new epidemic wave. This possibility is examined here by employing a neural ordinary differential equation (neural ODE) trained to forecast viral outbreaks in a specific geographic region. It learns from multivariate time series of signals derived from a novel set of large online polls regarding COVID-19 symptoms. Once trained, the neural ODE can capture the dynamics of interconnected local signals and effectively estimate the number of new infections up to two months in advance. In addition, it may predict the future consequences of changes in the number of infected at a certain period, which might be related with the flow of individuals entering or exiting a region. This study provides persuasive evidence for the predictive ability of widely disseminated social media surveys for public health applications.Fil: Nuñez, Matias. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Barreiro, Nadia Luisina. Ministerio de Defensa. Instituto de Investigaciones Científicas y Técnicas para la Defensa; ArgentinaFil: Barrio, Rafael Ángel. Universidad Nacional Autónoma de México; MéxicoFil: Rackauckas, Christopher. No especifíca;Nature2023-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/240737Nuñez, Matias; Barreiro, Nadia Luisina; Barrio, Rafael Ángel; Rackauckas, Christopher; Forecasting virus outbreaks with social media data via neural ordinary differential equations; Nature; Scientific Reports; 13; 1; 12-2023; 1-112045-2322CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1038/s41598-023-37118-9info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:32:52Zoai:ri.conicet.gov.ar:11336/240737instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:32:52.95CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Forecasting virus outbreaks with social media data via neural ordinary differential equations |
title |
Forecasting virus outbreaks with social media data via neural ordinary differential equations |
spellingShingle |
Forecasting virus outbreaks with social media data via neural ordinary differential equations Nuñez, Matias machine learning neural ode deep learning covid 19 |
title_short |
Forecasting virus outbreaks with social media data via neural ordinary differential equations |
title_full |
Forecasting virus outbreaks with social media data via neural ordinary differential equations |
title_fullStr |
Forecasting virus outbreaks with social media data via neural ordinary differential equations |
title_full_unstemmed |
Forecasting virus outbreaks with social media data via neural ordinary differential equations |
title_sort |
Forecasting virus outbreaks with social media data via neural ordinary differential equations |
dc.creator.none.fl_str_mv |
Nuñez, Matias Barreiro, Nadia Luisina Barrio, Rafael Ángel Rackauckas, Christopher |
author |
Nuñez, Matias |
author_facet |
Nuñez, Matias Barreiro, Nadia Luisina Barrio, Rafael Ángel Rackauckas, Christopher |
author_role |
author |
author2 |
Barreiro, Nadia Luisina Barrio, Rafael Ángel Rackauckas, Christopher |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
machine learning neural ode deep learning covid 19 |
topic |
machine learning neural ode deep learning covid 19 |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
During the Covid-19 pandemic, real-time social media data could in principle be used as an early predictor of a new epidemic wave. This possibility is examined here by employing a neural ordinary differential equation (neural ODE) trained to forecast viral outbreaks in a specific geographic region. It learns from multivariate time series of signals derived from a novel set of large online polls regarding COVID-19 symptoms. Once trained, the neural ODE can capture the dynamics of interconnected local signals and effectively estimate the number of new infections up to two months in advance. In addition, it may predict the future consequences of changes in the number of infected at a certain period, which might be related with the flow of individuals entering or exiting a region. This study provides persuasive evidence for the predictive ability of widely disseminated social media surveys for public health applications. Fil: Nuñez, Matias. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina Fil: Barreiro, Nadia Luisina. Ministerio de Defensa. Instituto de Investigaciones Científicas y Técnicas para la Defensa; Argentina Fil: Barrio, Rafael Ángel. Universidad Nacional Autónoma de México; México Fil: Rackauckas, Christopher. No especifíca; |
description |
During the Covid-19 pandemic, real-time social media data could in principle be used as an early predictor of a new epidemic wave. This possibility is examined here by employing a neural ordinary differential equation (neural ODE) trained to forecast viral outbreaks in a specific geographic region. It learns from multivariate time series of signals derived from a novel set of large online polls regarding COVID-19 symptoms. Once trained, the neural ODE can capture the dynamics of interconnected local signals and effectively estimate the number of new infections up to two months in advance. In addition, it may predict the future consequences of changes in the number of infected at a certain period, which might be related with the flow of individuals entering or exiting a region. This study provides persuasive evidence for the predictive ability of widely disseminated social media surveys for public health applications. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/240737 Nuñez, Matias; Barreiro, Nadia Luisina; Barrio, Rafael Ángel; Rackauckas, Christopher; Forecasting virus outbreaks with social media data via neural ordinary differential equations; Nature; Scientific Reports; 13; 1; 12-2023; 1-11 2045-2322 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/240737 |
identifier_str_mv |
Nuñez, Matias; Barreiro, Nadia Luisina; Barrio, Rafael Ángel; Rackauckas, Christopher; Forecasting virus outbreaks with social media data via neural ordinary differential equations; Nature; Scientific Reports; 13; 1; 12-2023; 1-11 2045-2322 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1038/s41598-023-37118-9 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Nature |
publisher.none.fl_str_mv |
Nature |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613005774422016 |
score |
13.070432 |