Métricas de calidad para validar los conjuntos de datos abiertos públicos gubernamentales
- Autores
- Martínez, María Roxana
- Año de publicación
- 2023
- Idioma
- español castellano
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- En estos tiempos, los datos son un recurso indispensable para cualquier actividad de gestión pública, por lo que es necesario mantenerlos actualizados, claros y completos. Este trabajo se enfoca en el contexto de Gobierno Abierto en aspectos del tratamiento del dato público abierto que disponibilizan las entidades estatales. Con el fin de identificar mejoras en los aspectos de calidad de los datasets abiertos, esta tesis plantea métricas críticas y no críticas para su análisis y validación de contenido, por lo que, como parte de la propuesta, se presenta un prototipo de desarrollo propio, llamado HEVDA (HErramienta de Validación de Datos Abiertos). A modo de caso de estudio, se extrae una muestra de datasets públicos estatales que son validados con HEVDA, para obtener un análisis sobre las mediciones utilizadas y realizar así, un estudio cuantitativo sobre los resultados arrojados. Esta herramienta de validación permite detectar en forma sencilla, las falencias y errores en las fuentes de datos abiertas que podrían complicar la interoperabilidad para su utilización en diversos orígenes de bases de datos y softwares externos de otros organismos. Para evaluar la calidad de datos es necesario tener en cuenta determinadas características en el conjunto de datos analizados, por lo que se realiza un relevamiento detallado de los aspectos más notables en cuestiones de calidad de datos sobre criterios estándares de norma ISO/IEC 25012, estándares universales de calidad de datos, dimensiones de la calidad de los datos, trabajos relevados y estudios realizados en esta temática. En el estudio desarrollado, se puede analizar sí es factible definir métricas de calidad de datos públicos gubernamentales en un formato abierto para efectuar un análisis cuantitativo a través de una herramienta amigable y sencilla. validación de DepProMod y las conclusiones obtenidas. Por último, se enuncian los principales aportes de la tesis doctoral, se esboza el trabajo futuro y las publicaciones obtenidas durante el desarrollo de la tesis.
Red de Universidades con Carreras en Informática - Materia
-
Ciencias Informáticas
datos abiertos
datos públicos
gobierno abierto
métricas de calidad de datos - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/164088
Ver los metadatos del registro completo
id |
SEDICI_4af07d098b1c86ed3685c5a41e31421e |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/164088 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Métricas de calidad para validar los conjuntos de datos abiertos públicos gubernamentalesMartínez, María RoxanaCiencias Informáticasdatos abiertosdatos públicosgobierno abiertométricas de calidad de datosEn estos tiempos, los datos son un recurso indispensable para cualquier actividad de gestión pública, por lo que es necesario mantenerlos actualizados, claros y completos. Este trabajo se enfoca en el contexto de Gobierno Abierto en aspectos del tratamiento del dato público abierto que disponibilizan las entidades estatales. Con el fin de identificar mejoras en los aspectos de calidad de los datasets abiertos, esta tesis plantea métricas críticas y no críticas para su análisis y validación de contenido, por lo que, como parte de la propuesta, se presenta un prototipo de desarrollo propio, llamado HEVDA (HErramienta de Validación de Datos Abiertos). A modo de caso de estudio, se extrae una muestra de datasets públicos estatales que son validados con HEVDA, para obtener un análisis sobre las mediciones utilizadas y realizar así, un estudio cuantitativo sobre los resultados arrojados. Esta herramienta de validación permite detectar en forma sencilla, las falencias y errores en las fuentes de datos abiertas que podrían complicar la interoperabilidad para su utilización en diversos orígenes de bases de datos y softwares externos de otros organismos. Para evaluar la calidad de datos es necesario tener en cuenta determinadas características en el conjunto de datos analizados, por lo que se realiza un relevamiento detallado de los aspectos más notables en cuestiones de calidad de datos sobre criterios estándares de norma ISO/IEC 25012, estándares universales de calidad de datos, dimensiones de la calidad de los datos, trabajos relevados y estudios realizados en esta temática. En el estudio desarrollado, se puede analizar sí es factible definir métricas de calidad de datos públicos gubernamentales en un formato abierto para efectuar un análisis cuantitativo a través de una herramienta amigable y sencilla. validación de DepProMod y las conclusiones obtenidas. Por último, se enuncian los principales aportes de la tesis doctoral, se esboza el trabajo futuro y las publicaciones obtenidas durante el desarrollo de la tesis.Red de Universidades con Carreras en Informática2023-04info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/164088spainfo:eu-repo/semantics/altIdentifier/isbn/978-987-3724-66-4info:eu-repo/semantics/altIdentifier/isbn/978-987-3724-67-1info:eu-repo/semantics/reference/url/https://sedici.unlp.edu.ar/handle/10915/162004info:eu-repo/semantics/reference/url/https://sedici.unlp.edu.ar/handle/10915/161620info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T11:15:06Zoai:sedici.unlp.edu.ar:10915/164088Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 11:15:06.686SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Métricas de calidad para validar los conjuntos de datos abiertos públicos gubernamentales |
title |
Métricas de calidad para validar los conjuntos de datos abiertos públicos gubernamentales |
spellingShingle |
Métricas de calidad para validar los conjuntos de datos abiertos públicos gubernamentales Martínez, María Roxana Ciencias Informáticas datos abiertos datos públicos gobierno abierto métricas de calidad de datos |
title_short |
Métricas de calidad para validar los conjuntos de datos abiertos públicos gubernamentales |
title_full |
Métricas de calidad para validar los conjuntos de datos abiertos públicos gubernamentales |
title_fullStr |
Métricas de calidad para validar los conjuntos de datos abiertos públicos gubernamentales |
title_full_unstemmed |
Métricas de calidad para validar los conjuntos de datos abiertos públicos gubernamentales |
title_sort |
Métricas de calidad para validar los conjuntos de datos abiertos públicos gubernamentales |
dc.creator.none.fl_str_mv |
Martínez, María Roxana |
author |
Martínez, María Roxana |
author_facet |
Martínez, María Roxana |
author_role |
author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas datos abiertos datos públicos gobierno abierto métricas de calidad de datos |
topic |
Ciencias Informáticas datos abiertos datos públicos gobierno abierto métricas de calidad de datos |
dc.description.none.fl_txt_mv |
En estos tiempos, los datos son un recurso indispensable para cualquier actividad de gestión pública, por lo que es necesario mantenerlos actualizados, claros y completos. Este trabajo se enfoca en el contexto de Gobierno Abierto en aspectos del tratamiento del dato público abierto que disponibilizan las entidades estatales. Con el fin de identificar mejoras en los aspectos de calidad de los datasets abiertos, esta tesis plantea métricas críticas y no críticas para su análisis y validación de contenido, por lo que, como parte de la propuesta, se presenta un prototipo de desarrollo propio, llamado HEVDA (HErramienta de Validación de Datos Abiertos). A modo de caso de estudio, se extrae una muestra de datasets públicos estatales que son validados con HEVDA, para obtener un análisis sobre las mediciones utilizadas y realizar así, un estudio cuantitativo sobre los resultados arrojados. Esta herramienta de validación permite detectar en forma sencilla, las falencias y errores en las fuentes de datos abiertas que podrían complicar la interoperabilidad para su utilización en diversos orígenes de bases de datos y softwares externos de otros organismos. Para evaluar la calidad de datos es necesario tener en cuenta determinadas características en el conjunto de datos analizados, por lo que se realiza un relevamiento detallado de los aspectos más notables en cuestiones de calidad de datos sobre criterios estándares de norma ISO/IEC 25012, estándares universales de calidad de datos, dimensiones de la calidad de los datos, trabajos relevados y estudios realizados en esta temática. En el estudio desarrollado, se puede analizar sí es factible definir métricas de calidad de datos públicos gubernamentales en un formato abierto para efectuar un análisis cuantitativo a través de una herramienta amigable y sencilla. validación de DepProMod y las conclusiones obtenidas. Por último, se enuncian los principales aportes de la tesis doctoral, se esboza el trabajo futuro y las publicaciones obtenidas durante el desarrollo de la tesis. Red de Universidades con Carreras en Informática |
description |
En estos tiempos, los datos son un recurso indispensable para cualquier actividad de gestión pública, por lo que es necesario mantenerlos actualizados, claros y completos. Este trabajo se enfoca en el contexto de Gobierno Abierto en aspectos del tratamiento del dato público abierto que disponibilizan las entidades estatales. Con el fin de identificar mejoras en los aspectos de calidad de los datasets abiertos, esta tesis plantea métricas críticas y no críticas para su análisis y validación de contenido, por lo que, como parte de la propuesta, se presenta un prototipo de desarrollo propio, llamado HEVDA (HErramienta de Validación de Datos Abiertos). A modo de caso de estudio, se extrae una muestra de datasets públicos estatales que son validados con HEVDA, para obtener un análisis sobre las mediciones utilizadas y realizar así, un estudio cuantitativo sobre los resultados arrojados. Esta herramienta de validación permite detectar en forma sencilla, las falencias y errores en las fuentes de datos abiertas que podrían complicar la interoperabilidad para su utilización en diversos orígenes de bases de datos y softwares externos de otros organismos. Para evaluar la calidad de datos es necesario tener en cuenta determinadas características en el conjunto de datos analizados, por lo que se realiza un relevamiento detallado de los aspectos más notables en cuestiones de calidad de datos sobre criterios estándares de norma ISO/IEC 25012, estándares universales de calidad de datos, dimensiones de la calidad de los datos, trabajos relevados y estudios realizados en esta temática. En el estudio desarrollado, se puede analizar sí es factible definir métricas de calidad de datos públicos gubernamentales en un formato abierto para efectuar un análisis cuantitativo a través de una herramienta amigable y sencilla. validación de DepProMod y las conclusiones obtenidas. Por último, se enuncian los principales aportes de la tesis doctoral, se esboza el trabajo futuro y las publicaciones obtenidas durante el desarrollo de la tesis. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/164088 |
url |
http://sedici.unlp.edu.ar/handle/10915/164088 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/isbn/978-987-3724-66-4 info:eu-repo/semantics/altIdentifier/isbn/978-987-3724-67-1 info:eu-repo/semantics/reference/url/https://sedici.unlp.edu.ar/handle/10915/162004 info:eu-repo/semantics/reference/url/https://sedici.unlp.edu.ar/handle/10915/161620 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842260656052502528 |
score |
13.13397 |