Assessing different rule quality measures in a genetic algorithm for discovering association rules
- Autores
- Soto, Wilson; Olaya Benavides, Amparo
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- The genetic algorithms have seen applied in knowledge discovery and specially for discovering association rules. In this paper, we explore the use of di erent rule quality measures in the tness function in a genetic algorithm for discovering association rules. Also, we present an improvement for this algorithm: (i) the mutation stage is calculated with a probability independent for each individual and (ii) the selection stage is calculated with Boltzmann selection. The proposed version was tested with 10 di erent rule quality evaluation functions on 6 benchmark datasets.
Eje: Workshop Bases de datos y minería de datos (WBDDM)
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
Algorithms
base de datos
Data mining
Knowledge Discovery
Association Rules
Genetic Algorithm - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/23749
Ver los metadatos del registro completo
id |
SEDICI_4adcf5fe2d26445a91a2d0539423a237 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/23749 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Assessing different rule quality measures in a genetic algorithm for discovering association rulesSoto, WilsonOlaya Benavides, AmparoCiencias InformáticasAlgorithmsbase de datosData miningKnowledge DiscoveryAssociation RulesGenetic AlgorithmThe genetic algorithms have seen applied in knowledge discovery and specially for discovering association rules. In this paper, we explore the use of di erent rule quality measures in the tness function in a genetic algorithm for discovering association rules. Also, we present an improvement for this algorithm: (i) the mutation stage is calculated with a probability independent for each individual and (ii) the selection stage is calculated with Boltzmann selection. The proposed version was tested with 10 di erent rule quality evaluation functions on 6 benchmark datasets.Eje: Workshop Bases de datos y minería de datos (WBDDM)Red de Universidades con Carreras en Informática (RedUNCI)2012-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/23749enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T10:55:35Zoai:sedici.unlp.edu.ar:10915/23749Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 10:55:35.808SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Assessing different rule quality measures in a genetic algorithm for discovering association rules |
title |
Assessing different rule quality measures in a genetic algorithm for discovering association rules |
spellingShingle |
Assessing different rule quality measures in a genetic algorithm for discovering association rules Soto, Wilson Ciencias Informáticas Algorithms base de datos Data mining Knowledge Discovery Association Rules Genetic Algorithm |
title_short |
Assessing different rule quality measures in a genetic algorithm for discovering association rules |
title_full |
Assessing different rule quality measures in a genetic algorithm for discovering association rules |
title_fullStr |
Assessing different rule quality measures in a genetic algorithm for discovering association rules |
title_full_unstemmed |
Assessing different rule quality measures in a genetic algorithm for discovering association rules |
title_sort |
Assessing different rule quality measures in a genetic algorithm for discovering association rules |
dc.creator.none.fl_str_mv |
Soto, Wilson Olaya Benavides, Amparo |
author |
Soto, Wilson |
author_facet |
Soto, Wilson Olaya Benavides, Amparo |
author_role |
author |
author2 |
Olaya Benavides, Amparo |
author2_role |
author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Algorithms base de datos Data mining Knowledge Discovery Association Rules Genetic Algorithm |
topic |
Ciencias Informáticas Algorithms base de datos Data mining Knowledge Discovery Association Rules Genetic Algorithm |
dc.description.none.fl_txt_mv |
The genetic algorithms have seen applied in knowledge discovery and specially for discovering association rules. In this paper, we explore the use of di erent rule quality measures in the tness function in a genetic algorithm for discovering association rules. Also, we present an improvement for this algorithm: (i) the mutation stage is calculated with a probability independent for each individual and (ii) the selection stage is calculated with Boltzmann selection. The proposed version was tested with 10 di erent rule quality evaluation functions on 6 benchmark datasets. Eje: Workshop Bases de datos y minería de datos (WBDDM) Red de Universidades con Carreras en Informática (RedUNCI) |
description |
The genetic algorithms have seen applied in knowledge discovery and specially for discovering association rules. In this paper, we explore the use of di erent rule quality measures in the tness function in a genetic algorithm for discovering association rules. Also, we present an improvement for this algorithm: (i) the mutation stage is calculated with a probability independent for each individual and (ii) the selection stage is calculated with Boltzmann selection. The proposed version was tested with 10 di erent rule quality evaluation functions on 6 benchmark datasets. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/23749 |
url |
http://sedici.unlp.edu.ar/handle/10915/23749 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844615815282819072 |
score |
13.070432 |