Cubic mixing rules

Autores
Zabaloy, Marcelo Santiago
Año de publicación
2008
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The accurate description of thermodynamic properties of asymmetric multicomponent fluid systems of industrial interest, over a wide range of conditions, requires the availability of models that are both consistent and mathematically flexible. Specially suited models are those of the equation-of-state (EOS) type, which are built to represent the properties of liquids, vapors, and supercritical fluids. The composition dependence of EOSs is typically pairwise additive, with binary interaction parameters conventionally fit to match experimental information on binary systems. This is the case for the well-known van der Waals quadratic mixing rules (QMRs), which assume multicomponent system describability from binary parameters. In contrast, cubic mixing rules (CMRs) depend on binary and ternary interaction parameters. Thus, CMRs offer the possibility of increasing the model flexibility, i.e., CMRs are ternionwise additive. This means that, through ternary parameters, CMRs make it possible to influence the model behavior for ternary systems while leaving invariant the description of the corresponding binary subsystems. However, the increased flexibility implies the need for experimental information on ternary systems. This is so, unless we have a method to predict values for ternary parameters from values of binary parameters for the ternary subsystems not having ternary experimental information available, when we want to model the behavior of multicomponent fluids. Mathias, Klotz, and Prausnitz (MKP) [Fluid Phase Equilib. 1991, 67, 31-44] put forward this problem. In this work, we provide a possible solution, i.e., an equation to predict three index ternary parameters from three index binary parameters within the context of CMRs. Our equation matches the Michelsen-Kistenmacher invariance constraint and, in a way, has the pair-based MKP mixing rule in its genesis. The present approach can be extended also to models that are not of the EOS type. © 2008 American Chemical Society.
Fil: Zabaloy, Marcelo Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
Materia
Mixing Rules
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/65826

id CONICETDig_6d7a7026389e4db2d1daa70260b623e4
oai_identifier_str oai:ri.conicet.gov.ar:11336/65826
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Cubic mixing rulesZabaloy, Marcelo SantiagoMixing Ruleshttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2The accurate description of thermodynamic properties of asymmetric multicomponent fluid systems of industrial interest, over a wide range of conditions, requires the availability of models that are both consistent and mathematically flexible. Specially suited models are those of the equation-of-state (EOS) type, which are built to represent the properties of liquids, vapors, and supercritical fluids. The composition dependence of EOSs is typically pairwise additive, with binary interaction parameters conventionally fit to match experimental information on binary systems. This is the case for the well-known van der Waals quadratic mixing rules (QMRs), which assume multicomponent system describability from binary parameters. In contrast, cubic mixing rules (CMRs) depend on binary and ternary interaction parameters. Thus, CMRs offer the possibility of increasing the model flexibility, i.e., CMRs are ternionwise additive. This means that, through ternary parameters, CMRs make it possible to influence the model behavior for ternary systems while leaving invariant the description of the corresponding binary subsystems. However, the increased flexibility implies the need for experimental information on ternary systems. This is so, unless we have a method to predict values for ternary parameters from values of binary parameters for the ternary subsystems not having ternary experimental information available, when we want to model the behavior of multicomponent fluids. Mathias, Klotz, and Prausnitz (MKP) [Fluid Phase Equilib. 1991, 67, 31-44] put forward this problem. In this work, we provide a possible solution, i.e., an equation to predict three index ternary parameters from three index binary parameters within the context of CMRs. Our equation matches the Michelsen-Kistenmacher invariance constraint and, in a way, has the pair-based MKP mixing rule in its genesis. The present approach can be extended also to models that are not of the EOS type. © 2008 American Chemical Society.Fil: Zabaloy, Marcelo Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; ArgentinaAmerican Chemical Society2008-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/65826Zabaloy, Marcelo Santiago; Cubic mixing rules; American Chemical Society; Industrial & Engineering Chemical Research; 47; 15; 8-2008; 5063-50790888-5885CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/abs/10.1021/ie071570binfo:eu-repo/semantics/altIdentifier/doi/10.1021/ie071570binfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:31:33Zoai:ri.conicet.gov.ar:11336/65826instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:31:33.858CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Cubic mixing rules
title Cubic mixing rules
spellingShingle Cubic mixing rules
Zabaloy, Marcelo Santiago
Mixing Rules
title_short Cubic mixing rules
title_full Cubic mixing rules
title_fullStr Cubic mixing rules
title_full_unstemmed Cubic mixing rules
title_sort Cubic mixing rules
dc.creator.none.fl_str_mv Zabaloy, Marcelo Santiago
author Zabaloy, Marcelo Santiago
author_facet Zabaloy, Marcelo Santiago
author_role author
dc.subject.none.fl_str_mv Mixing Rules
topic Mixing Rules
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.4
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv The accurate description of thermodynamic properties of asymmetric multicomponent fluid systems of industrial interest, over a wide range of conditions, requires the availability of models that are both consistent and mathematically flexible. Specially suited models are those of the equation-of-state (EOS) type, which are built to represent the properties of liquids, vapors, and supercritical fluids. The composition dependence of EOSs is typically pairwise additive, with binary interaction parameters conventionally fit to match experimental information on binary systems. This is the case for the well-known van der Waals quadratic mixing rules (QMRs), which assume multicomponent system describability from binary parameters. In contrast, cubic mixing rules (CMRs) depend on binary and ternary interaction parameters. Thus, CMRs offer the possibility of increasing the model flexibility, i.e., CMRs are ternionwise additive. This means that, through ternary parameters, CMRs make it possible to influence the model behavior for ternary systems while leaving invariant the description of the corresponding binary subsystems. However, the increased flexibility implies the need for experimental information on ternary systems. This is so, unless we have a method to predict values for ternary parameters from values of binary parameters for the ternary subsystems not having ternary experimental information available, when we want to model the behavior of multicomponent fluids. Mathias, Klotz, and Prausnitz (MKP) [Fluid Phase Equilib. 1991, 67, 31-44] put forward this problem. In this work, we provide a possible solution, i.e., an equation to predict three index ternary parameters from three index binary parameters within the context of CMRs. Our equation matches the Michelsen-Kistenmacher invariance constraint and, in a way, has the pair-based MKP mixing rule in its genesis. The present approach can be extended also to models that are not of the EOS type. © 2008 American Chemical Society.
Fil: Zabaloy, Marcelo Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
description The accurate description of thermodynamic properties of asymmetric multicomponent fluid systems of industrial interest, over a wide range of conditions, requires the availability of models that are both consistent and mathematically flexible. Specially suited models are those of the equation-of-state (EOS) type, which are built to represent the properties of liquids, vapors, and supercritical fluids. The composition dependence of EOSs is typically pairwise additive, with binary interaction parameters conventionally fit to match experimental information on binary systems. This is the case for the well-known van der Waals quadratic mixing rules (QMRs), which assume multicomponent system describability from binary parameters. In contrast, cubic mixing rules (CMRs) depend on binary and ternary interaction parameters. Thus, CMRs offer the possibility of increasing the model flexibility, i.e., CMRs are ternionwise additive. This means that, through ternary parameters, CMRs make it possible to influence the model behavior for ternary systems while leaving invariant the description of the corresponding binary subsystems. However, the increased flexibility implies the need for experimental information on ternary systems. This is so, unless we have a method to predict values for ternary parameters from values of binary parameters for the ternary subsystems not having ternary experimental information available, when we want to model the behavior of multicomponent fluids. Mathias, Klotz, and Prausnitz (MKP) [Fluid Phase Equilib. 1991, 67, 31-44] put forward this problem. In this work, we provide a possible solution, i.e., an equation to predict three index ternary parameters from three index binary parameters within the context of CMRs. Our equation matches the Michelsen-Kistenmacher invariance constraint and, in a way, has the pair-based MKP mixing rule in its genesis. The present approach can be extended also to models that are not of the EOS type. © 2008 American Chemical Society.
publishDate 2008
dc.date.none.fl_str_mv 2008-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/65826
Zabaloy, Marcelo Santiago; Cubic mixing rules; American Chemical Society; Industrial & Engineering Chemical Research; 47; 15; 8-2008; 5063-5079
0888-5885
CONICET Digital
CONICET
url http://hdl.handle.net/11336/65826
identifier_str_mv Zabaloy, Marcelo Santiago; Cubic mixing rules; American Chemical Society; Industrial & Engineering Chemical Research; 47; 15; 8-2008; 5063-5079
0888-5885
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/abs/10.1021/ie071570b
info:eu-repo/semantics/altIdentifier/doi/10.1021/ie071570b
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Chemical Society
publisher.none.fl_str_mv American Chemical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614326412902400
score 13.070432