Cubic mixing rules
- Autores
- Zabaloy, Marcelo Santiago
- Año de publicación
- 2008
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The accurate description of thermodynamic properties of asymmetric multicomponent fluid systems of industrial interest, over a wide range of conditions, requires the availability of models that are both consistent and mathematically flexible. Specially suited models are those of the equation-of-state (EOS) type, which are built to represent the properties of liquids, vapors, and supercritical fluids. The composition dependence of EOSs is typically pairwise additive, with binary interaction parameters conventionally fit to match experimental information on binary systems. This is the case for the well-known van der Waals quadratic mixing rules (QMRs), which assume multicomponent system describability from binary parameters. In contrast, cubic mixing rules (CMRs) depend on binary and ternary interaction parameters. Thus, CMRs offer the possibility of increasing the model flexibility, i.e., CMRs are ternionwise additive. This means that, through ternary parameters, CMRs make it possible to influence the model behavior for ternary systems while leaving invariant the description of the corresponding binary subsystems. However, the increased flexibility implies the need for experimental information on ternary systems. This is so, unless we have a method to predict values for ternary parameters from values of binary parameters for the ternary subsystems not having ternary experimental information available, when we want to model the behavior of multicomponent fluids. Mathias, Klotz, and Prausnitz (MKP) [Fluid Phase Equilib. 1991, 67, 31-44] put forward this problem. In this work, we provide a possible solution, i.e., an equation to predict three index ternary parameters from three index binary parameters within the context of CMRs. Our equation matches the Michelsen-Kistenmacher invariance constraint and, in a way, has the pair-based MKP mixing rule in its genesis. The present approach can be extended also to models that are not of the EOS type. © 2008 American Chemical Society.
Fil: Zabaloy, Marcelo Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina - Materia
- Mixing Rules
- Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/65826
Ver los metadatos del registro completo
id |
CONICETDig_6d7a7026389e4db2d1daa70260b623e4 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/65826 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Cubic mixing rulesZabaloy, Marcelo SantiagoMixing Ruleshttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2The accurate description of thermodynamic properties of asymmetric multicomponent fluid systems of industrial interest, over a wide range of conditions, requires the availability of models that are both consistent and mathematically flexible. Specially suited models are those of the equation-of-state (EOS) type, which are built to represent the properties of liquids, vapors, and supercritical fluids. The composition dependence of EOSs is typically pairwise additive, with binary interaction parameters conventionally fit to match experimental information on binary systems. This is the case for the well-known van der Waals quadratic mixing rules (QMRs), which assume multicomponent system describability from binary parameters. In contrast, cubic mixing rules (CMRs) depend on binary and ternary interaction parameters. Thus, CMRs offer the possibility of increasing the model flexibility, i.e., CMRs are ternionwise additive. This means that, through ternary parameters, CMRs make it possible to influence the model behavior for ternary systems while leaving invariant the description of the corresponding binary subsystems. However, the increased flexibility implies the need for experimental information on ternary systems. This is so, unless we have a method to predict values for ternary parameters from values of binary parameters for the ternary subsystems not having ternary experimental information available, when we want to model the behavior of multicomponent fluids. Mathias, Klotz, and Prausnitz (MKP) [Fluid Phase Equilib. 1991, 67, 31-44] put forward this problem. In this work, we provide a possible solution, i.e., an equation to predict three index ternary parameters from three index binary parameters within the context of CMRs. Our equation matches the Michelsen-Kistenmacher invariance constraint and, in a way, has the pair-based MKP mixing rule in its genesis. The present approach can be extended also to models that are not of the EOS type. © 2008 American Chemical Society.Fil: Zabaloy, Marcelo Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; ArgentinaAmerican Chemical Society2008-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/65826Zabaloy, Marcelo Santiago; Cubic mixing rules; American Chemical Society; Industrial & Engineering Chemical Research; 47; 15; 8-2008; 5063-50790888-5885CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/abs/10.1021/ie071570binfo:eu-repo/semantics/altIdentifier/doi/10.1021/ie071570binfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:31:33Zoai:ri.conicet.gov.ar:11336/65826instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:31:33.858CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Cubic mixing rules |
title |
Cubic mixing rules |
spellingShingle |
Cubic mixing rules Zabaloy, Marcelo Santiago Mixing Rules |
title_short |
Cubic mixing rules |
title_full |
Cubic mixing rules |
title_fullStr |
Cubic mixing rules |
title_full_unstemmed |
Cubic mixing rules |
title_sort |
Cubic mixing rules |
dc.creator.none.fl_str_mv |
Zabaloy, Marcelo Santiago |
author |
Zabaloy, Marcelo Santiago |
author_facet |
Zabaloy, Marcelo Santiago |
author_role |
author |
dc.subject.none.fl_str_mv |
Mixing Rules |
topic |
Mixing Rules |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.4 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
The accurate description of thermodynamic properties of asymmetric multicomponent fluid systems of industrial interest, over a wide range of conditions, requires the availability of models that are both consistent and mathematically flexible. Specially suited models are those of the equation-of-state (EOS) type, which are built to represent the properties of liquids, vapors, and supercritical fluids. The composition dependence of EOSs is typically pairwise additive, with binary interaction parameters conventionally fit to match experimental information on binary systems. This is the case for the well-known van der Waals quadratic mixing rules (QMRs), which assume multicomponent system describability from binary parameters. In contrast, cubic mixing rules (CMRs) depend on binary and ternary interaction parameters. Thus, CMRs offer the possibility of increasing the model flexibility, i.e., CMRs are ternionwise additive. This means that, through ternary parameters, CMRs make it possible to influence the model behavior for ternary systems while leaving invariant the description of the corresponding binary subsystems. However, the increased flexibility implies the need for experimental information on ternary systems. This is so, unless we have a method to predict values for ternary parameters from values of binary parameters for the ternary subsystems not having ternary experimental information available, when we want to model the behavior of multicomponent fluids. Mathias, Klotz, and Prausnitz (MKP) [Fluid Phase Equilib. 1991, 67, 31-44] put forward this problem. In this work, we provide a possible solution, i.e., an equation to predict three index ternary parameters from three index binary parameters within the context of CMRs. Our equation matches the Michelsen-Kistenmacher invariance constraint and, in a way, has the pair-based MKP mixing rule in its genesis. The present approach can be extended also to models that are not of the EOS type. © 2008 American Chemical Society. Fil: Zabaloy, Marcelo Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina |
description |
The accurate description of thermodynamic properties of asymmetric multicomponent fluid systems of industrial interest, over a wide range of conditions, requires the availability of models that are both consistent and mathematically flexible. Specially suited models are those of the equation-of-state (EOS) type, which are built to represent the properties of liquids, vapors, and supercritical fluids. The composition dependence of EOSs is typically pairwise additive, with binary interaction parameters conventionally fit to match experimental information on binary systems. This is the case for the well-known van der Waals quadratic mixing rules (QMRs), which assume multicomponent system describability from binary parameters. In contrast, cubic mixing rules (CMRs) depend on binary and ternary interaction parameters. Thus, CMRs offer the possibility of increasing the model flexibility, i.e., CMRs are ternionwise additive. This means that, through ternary parameters, CMRs make it possible to influence the model behavior for ternary systems while leaving invariant the description of the corresponding binary subsystems. However, the increased flexibility implies the need for experimental information on ternary systems. This is so, unless we have a method to predict values for ternary parameters from values of binary parameters for the ternary subsystems not having ternary experimental information available, when we want to model the behavior of multicomponent fluids. Mathias, Klotz, and Prausnitz (MKP) [Fluid Phase Equilib. 1991, 67, 31-44] put forward this problem. In this work, we provide a possible solution, i.e., an equation to predict three index ternary parameters from three index binary parameters within the context of CMRs. Our equation matches the Michelsen-Kistenmacher invariance constraint and, in a way, has the pair-based MKP mixing rule in its genesis. The present approach can be extended also to models that are not of the EOS type. © 2008 American Chemical Society. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/65826 Zabaloy, Marcelo Santiago; Cubic mixing rules; American Chemical Society; Industrial & Engineering Chemical Research; 47; 15; 8-2008; 5063-5079 0888-5885 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/65826 |
identifier_str_mv |
Zabaloy, Marcelo Santiago; Cubic mixing rules; American Chemical Society; Industrial & Engineering Chemical Research; 47; 15; 8-2008; 5063-5079 0888-5885 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/abs/10.1021/ie071570b info:eu-repo/semantics/altIdentifier/doi/10.1021/ie071570b |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Chemical Society |
publisher.none.fl_str_mv |
American Chemical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614326412902400 |
score |
13.070432 |